BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 29969945)

  • 1. Specific autophagy and ESCRT components participate in the unconventional secretion of CFTR.
    Noh SH; Gee HY; Kim Y; Piao H; Kim J; Kang CM; Lee G; Mook-Jung I; Lee Y; Cho JW; Lee MG
    Autophagy; 2018; 14(10):1761-1778. PubMed ID: 29969945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sec16A is critical for both conventional and unconventional secretion of CFTR.
    Piao H; Kim J; Noh SH; Kweon HS; Kim JY; Lee MG
    Sci Rep; 2017 Jan; 7():39887. PubMed ID: 28067262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR.
    Kim J; Noh SH; Piao H; Kim DH; Kim K; Cha JS; Chung WY; Cho HS; Kim JY; Lee MG
    Traffic; 2016 Jul; 17(7):733-53. PubMed ID: 27062250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway.
    Gee HY; Noh SH; Tang BL; Kim KH; Lee MG
    Cell; 2011 Sep; 146(5):746-60. PubMed ID: 21884936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ESCRT dysfunction compromises endoplasmic reticulum maturation and autophagosome biogenesis in Drosophila.
    Wang R; Miao G; Shen JL; Fortier TM; Baehrecke EH
    Curr Biol; 2022 Mar; 32(6):1262-1274.e4. PubMed ID: 35134326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway.
    Yoo JS; Moyer BD; Bannykh S; Yoo HM; Riordan JR; Balch WE
    J Biol Chem; 2002 Mar; 277(13):11401-9. PubMed ID: 11799116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion.
    Bruns C; McCaffery JM; Curwin AJ; Duran JM; Malhotra V
    J Cell Biol; 2011 Dec; 195(6):979-92. PubMed ID: 22144692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of molecular determinants that modulate trafficking of DeltaF508 CFTR, the mutant ABC transporter associated with cystic fibrosis.
    Tsigelny I; Hotchko M; Yuan JX; Keller SH
    Cell Biochem Biophys; 2005; 42(1):41-53. PubMed ID: 15673927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion.
    Kim YH; Kwak MS; Lee B; Shin JM; Aum S; Park IH; Lee MG; Shin JS
    Autophagy; 2021 Sep; 17(9):2345-2362. PubMed ID: 33017561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast.
    Zhao Y; Du J; Xiong B; Xu H; Jiang L
    J Mol Cell Biol; 2013 Oct; 5(5):336-44. PubMed ID: 23933635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the trafficking pathway of cystic fibrosis transmembrane conductance regulator in baby hamster kidney cells.
    Okiyoneda T; Harada K; Yamahira K; Wada I; Hashimoto Y; Ueno K; Suico MA; Shuto T; Kai H
    J Pharmacol Sci; 2004 Aug; 95(4):471-5. PubMed ID: 15286432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of conventional and unconventional trafficking of CFTR and other membrane proteins.
    Gee HY; Kim JY; Lee MG
    Methods Mol Biol; 2015; 1270():137-54. PubMed ID: 25702115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidic acid metabolism regulates the intracellular trafficking and retrotranslocation of CFTR.
    Hashimoto Y; Okiyoneda T; Harada K; Ueno K; Sugahara T; Yamashita A; Shuto T; Suico MA; Kai H
    Biochim Biophys Acta; 2008 Jan; 1783(1):153-62. PubMed ID: 17936375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic pattern of cystic fibrosis transmembrane regulator through the early exocytic pathway.
    Bannykh SI; Bannykh GI; Fish KN; Moyer BD; Riordan JR; Balch WE
    Traffic; 2000 Nov; 1(11):852-70. PubMed ID: 11208075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ER-associated complexes (ERACs) containing aggregated cystic fibrosis transmembrane conductance regulator (CFTR) are degraded by autophagy.
    Fu L; Sztul E
    Eur J Cell Biol; 2009 Apr; 88(4):215-26. PubMed ID: 19131141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMED3 Complex Mediates ER Stress-Associated Secretion of CFTR, Pendrin, and SARS-CoV-2 Spike.
    Park H; Seo SK; Sim JR; Hwang SJ; Kim YJ; Shin DH; Jang DG; Noh SH; Park PG; Ko SH; Shin MH; Choi JY; Ito Y; Kang CM; Lee JM; Lee MG
    Adv Sci (Weinh); 2022 Aug; 9(24):e2105320. PubMed ID: 35748162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration.
    Feng Q; Luo Y; Zhang XN; Yang XF; Hong XY; Sun DS; Li XC; Hu Y; Li XG; Zhang JF; Li X; Yang Y; Wang Q; Liu GP; Wang JZ
    Autophagy; 2020 Apr; 16(4):641-658. PubMed ID: 31223056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation.
    Gao C; Zhuang X; Cui Y; Fu X; He Y; Zhao Q; Zeng Y; Shen J; Luo M; Jiang L
    Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1886-91. PubMed ID: 25624505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GRASP55: A Multifunctional Protein.
    Wu H; Li T; Zhao J
    Curr Protein Pept Sci; 2020; 21(6):544-552. PubMed ID: 32067616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.