BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 29970094)

  • 41. Antimicrobial anthraquinones from Morinda angustifolia.
    Xiang W; Song QS; Zhang HJ; Guo SP
    Fitoterapia; 2008 Dec; 79(7-8):501-4. PubMed ID: 18621113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytotoxic Compounds from Aloe megalacantha.
    Abdissa N; Gohlke S; Frese M; Sewald N
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28686200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rubipodanin B, a New Cytotoxic Cyclopeptide from Rubia podantha.
    Hu YY; Feng L; Wang J; Zhang XJ; Wang Z; Tan NH
    Chem Biodivers; 2019 Jan; 16(1):e1800438. PubMed ID: 30334345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytotoxicity of anthraquinones from the roots of Pentas schimperi towards multi-factorial drug-resistant cancer cells.
    Kuete V; Donfack AR; Mbaveng AT; Zeino M; Tane P; Efferth T
    Invest New Drugs; 2015 Aug; 33(4):861-9. PubMed ID: 26115800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design, synthesis and cytotoxic effect of hydroxy- and 3-alkylaminopropoxy-9,10-anthraquinone derivatives.
    Teng CH; Won SJ; Lin CN
    Bioorg Med Chem; 2005 May; 13(10):3439-45. PubMed ID: 15848756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging.
    Ishii Y; Nakamura K; Mitsumoto T; Takimoto N; Namiki M; Takasu S; Ogawa K
    Food Chem Toxicol; 2022 Mar; 161():112851. PubMed ID: 35139434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytotoxic anthraquinone dimers from Melandrium firmum.
    Zhang CH; Yao DL; Li CS; Luo J; Jin M; Zheng MS; Lin ZH; Jin TF; Li G
    Arch Pharm Res; 2015 Jun; 38(6):1033-7. PubMed ID: 24578260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-proliferative and cytotoxic activities of Allium autumnale P. H. Davis (Amaryllidaceae) on human breast cancer cell lines MCF-7 and MDA-MB-231.
    Isbilen O; Rizaner N; Volkan E
    BMC Complement Altern Med; 2018 Jan; 18(1):30. PubMed ID: 29370794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New anthraquinone glycosides from the roots of Morinda citrifolia.
    Kamiya K; Hamabe W; Tokuyama S; Satake T
    Fitoterapia; 2009 Apr; 80(3):196-9. PubMed ID: 19233251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rubipodanones A-D, naphthohydroquinone dimers from the roots and rhizomes of Rubia podantha.
    Wang Z; Zhao SM; Hu YY; Feng L; Zhao LM; Di YT; Tan NH
    Phytochemistry; 2018 Jan; 145():153-160. PubMed ID: 29132078
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quinone derivatives from the genus Rubia and their bioactivities.
    Xu K; Wang P; Wang L; Liu C; Xu S; Cheng Y; Wang Y; Li Q; Lei H
    Chem Biodivers; 2014 Mar; 11(3):341-63. PubMed ID: 24634067
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study on Redox Properties and Cytotoxicity of Anthraquinone Derivatives to Understand Antitumor Active Anthracycline Substances.
    Okumura N; Mizutani H; Ishihama T; Ito M; Hashibe A; Nakayama T; Uno B
    Chem Pharm Bull (Tokyo); 2019; 67(7):717-720. PubMed ID: 31257327
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of Cytotoxicity of Different Part Extracts of Ipomoea turpethum against Breast Cancer Cell Lines.
    Mughees M; Wajid S
    J Environ Pathol Toxicol Oncol; 2020; 39(1):51-60. PubMed ID: 32479012
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Morindaquinone, a new bianthraquinone from
    Chokchaisiri S; Siriwattanasathien Y; Thongbamrer C; Suksamrarn A; Rukachaisirikul T
    Nat Prod Res; 2021 Oct; 35(20):3439-3445. PubMed ID: 31876434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The mutagenic constituents of Rubia tinctorum.
    Kawasaki Y; Goda Y; Yoshihira K
    Chem Pharm Bull (Tokyo); 1992 Jun; 40(6):1504-9. PubMed ID: 1394669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sulfated Naphthopyrones and Anthraquinones from the Vietnamese Crinoid Comanthus delicata.
    Vien LT; Hanh TTH; Quang TH; Thung DC; Cuong NX; Nam NH; Cuong PV; Kiem PV; Minh CV
    Chem Pharm Bull (Tokyo); 2022; 70(5):408-412. PubMed ID: 35491198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cytotoxicity of Plumbagin, Rapanone and 12 other naturally occurring Quinones from Kenyan Flora towards human carcinoma cells.
    Kuete V; Omosa LK; Tala VR; Midiwo JO; Mbaveng AT; Swaleh S; Karaosmanoğlu O; Sivas H
    BMC Pharmacol Toxicol; 2016 Dec; 17(1):60. PubMed ID: 27998305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxic anthraquinone derivatives from Picramnia antidesma.
    Hernández-Medel Mdel R; Pereda-Miranda R
    Planta Med; 2002 Jun; 68(6):556-8. PubMed ID: 12094306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots.
    Somwong P; Suttisri R
    J Integr Med; 2018 Jan; 16(1):57-61. PubMed ID: 29397094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytotoxic anthraquinones from the stems of Rubia wallichiana Decne.
    Wu TS; Lin DM; Shi LS; Damu AG; Kuo PC; Kuo YH
    Chem Pharm Bull (Tokyo); 2003 Aug; 51(8):948-50. PubMed ID: 12913233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.