BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29970487)

  • 1. Comprehensive overview of the pharmacogenetic diversity in Ashkenazi Jews.
    Zhou Y; Lauschke VM
    J Med Genet; 2018 Sep; 55(9):617-627. PubMed ID: 29970487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations.
    Scott SA; Edelmann L; Kornreich R; Desnick RJ
    Am J Hum Genet; 2008 Feb; 82(2):495-500. PubMed ID: 18252229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacogenetics in Jewish populations.
    Yang Y; Peter I; Scott SA
    Drug Metabol Drug Interact; 2014; 29(4):221-33. PubMed ID: 24867283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotype frequencies of VKORC1 and CYP2C9 in native and Mestizo populations from Mexico, potential impact for coumarin dosing.
    Villegas-Torres B; Sánchez-Girón F; Jaramillo-Villafuerte K; Soberón X; Gonzalez-Covarrubias V
    Gene; 2015 Mar; 558(2):235-40. PubMed ID: 25560189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing.
    Scott SA; Jaremko M; Lubitz SA; Kornreich R; Halperin JL; Desnick RJ
    Pharmacogenomics; 2009 Aug; 10(8):1243-55. PubMed ID: 19663669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228).
    Lévi F; Karaboué A; Saffroy R; Desterke C; Boige V; Smith D; Hebbar M; Innominato P; Taieb J; Carvalho C; Guimbaud R; Focan C; Bouchahda M; Adam R; Ducreux M; Milano G; Lemoine A
    Br J Cancer; 2017 Sep; 117(7):965-973. PubMed ID: 28817838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical pharmacogenetics and potential application in personalized medicine.
    Zhou SF; Di YM; Chan E; Du YM; Chow VD; Xue CC; Lai X; Wang JC; Li CG; Tian M; Duan W
    Curr Drug Metab; 2008 Oct; 9(8):738-84. PubMed ID: 18855611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of CYP2C9, VKORC1, and CYP4F2 polymorphisms on the pharmacodynamic parameters of warfarin: a cross-sectional study.
    Sridharan K; Al Banna R; Malalla Z; Husain A; Sater M; Jassim G; Otoom S
    Pharmacol Rep; 2021 Oct; 73(5):1405-1417. PubMed ID: 33811620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of CYP2C9 and VKORC1 risk alleles for warfarin sensitivity and resistance in the Israeli population.
    Efrati E; Elkin H; Sprecher E; Krivoy N
    Curr Drug Saf; 2010 Jul; 5(3):190-3. PubMed ID: 20210733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VKORC1 and CYP2C9 genotype distribution in Asian countries.
    Gaikwad T; Ghosh K; Shetty S
    Thromb Res; 2014 Sep; 134(3):537-44. PubMed ID: 24908449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic epidemiology of pharmacogenetic variations in CYP2C9, CYP4F2 and VKORC1 genes associated with warfarin dosage in the Indian population.
    Giri AK; Khan NM; Grover S; Kaur I; Basu A; Tandon N; Scaria V; ; ; Kukreti R; Brahmachari SK; Bharadwaj D
    Pharmacogenomics; 2014 Jul; 15(10):1337-54. PubMed ID: 25155935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects.
    Zhou Y; Ingelman-Sundberg M; Lauschke VM
    Clin Pharmacol Ther; 2017 Oct; 102(4):688-700. PubMed ID: 28378927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic, clinical and behavioural determinants of vitamin K-antagonist dose--explored through multivariable modelling and visualization.
    Skov J; Bladbjerg EM; Rasmussen MA; Sidelmann JJ; Leppin A; Jespersen J
    Basic Clin Pharmacol Toxicol; 2012 Feb; 110(2):193-8. PubMed ID: 21895980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of pharmacogenetic variants from large scale next generation sequencing data in the Saudi population.
    Goljan E; Abouelhoda M; ElKalioby MM; Jabaan A; Alghithi N; Meyer BF; Monies D
    PLoS One; 2022; 17(1):e0263137. PubMed ID: 35089958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacogenetics of Warfarin in a Diverse Patient Population.
    Mak M; Lam C; Pineda SJ; Lou M; Xu LY; Meeks C; Lin C; Stone R; Rodgers K; Mitani G
    J Cardiovasc Pharmacol Ther; 2019 Nov; 24(6):521-533. PubMed ID: 31064211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a proposed warfarin dosing algorithm based on the genetic make-up of Egyptian patients.
    Ekladious SM; Issac MS; El-Atty Sharaf SA; Abou-Youssef HS
    Mol Diagn Ther; 2013 Dec; 17(6):381-90. PubMed ID: 23839801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects.
    Matimba A; Del-Favero J; Van Broeckhoven C; Masimirembwa C
    Hum Genomics; 2009 Jan; 3(2):169-90. PubMed ID: 19164093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacogenetics-Based Warfarin Dosing in Patients With Cardiac Valve Replacement: The Effects of CYP2C9 and VKORC1 Gene Polymorphisms.
    Farzamikia N; Sakhinia E; Afrasiabirad A
    Lab Med; 2017 Dec; 49(1):25-34. PubMed ID: 29182754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency of selected single nucleotide polymorphisms influencing the warfarin pharmacogenetics in Slovak population.
    Krajčíová L; Petrovič R; Déžiová L; Chandoga J; Turčáni P
    Eur J Haematol; 2014 Oct; 93(4):320-8. PubMed ID: 24750390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacogenetics aspects of oral anticoagulants therapy.
    Militaru FC; Vesa SC; Pop TR; Buzoianu AD
    J Med Life; 2015; 8(2):171-5. PubMed ID: 25866574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.