BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29970661)

  • 1. A differential expression network method identifies ankylosing spondylitis-related genes.
    Gao P; Fu S; Liu Y; Zi X
    J Cancer Res Ther; 2018; 14(4):833-837. PubMed ID: 29970661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting the potential ankylosing spondylitis-related genes utilizing bioinformatics approaches.
    Zhao H; Wang D; Fu D; Xue L
    Rheumatol Int; 2015 Jun; 35(6):973-9. PubMed ID: 25432079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Biomarker
    Xiao B; Cui PL; Li HC; Wang C; Zhang YZ; Wu ZM; Wu CA
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):343. PubMed ID: 38179754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Insights into the Regulatory Role of Ferroptosis in Ankylosing Spondylitis via Consensus Clustering of Ferroptosis-Related Genes and Weighted Gene Co-Expression Network Analysis.
    Rong T; Jia N; Wu B; Sang D; Liu B
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 36011284
    [No Abstract]   [Full Text] [Related]  

  • 5. Whole-blood gene expression profiling in ankylosing spondylitis identifies novel candidate genes that may contribute to the inflammatory and tissue-destructive disease aspects.
    Chen K; Wei XZ; Zhu XD; Bai YS; Chen Y; Wang CF; Chen ZQ; Li M
    Cell Immunol; 2013; 286(1-2):59-64. PubMed ID: 24326123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening key genes associated with congenital heart defects in Down syndrome based on differential expression network.
    Yu S; Yi H; Wang Z; Dong J
    Int J Clin Exp Pathol; 2015; 8(7):8385-93. PubMed ID: 26339408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis.
    Hu S; Liao Y; Chen L
    Med Sci Monit; 2018 Sep; 24():6438-6448. PubMed ID: 30213925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics Analysis of the Molecular Mechanism and Potential Treatment Target of Ankylosing Spondylitis.
    Meng F; Du N; Xu D; Kuai L; Liu L; Xiu M
    Comput Math Methods Med; 2021; 2021():7471291. PubMed ID: 34335866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated Analysis of Hub Genes and Pathways In Esophageal Carcinoma Based on NCBI's Gene Expression Omnibus (GEO) Database: A Bioinformatics Analysis.
    Yu-Jing T; Wen-Jing T; Biao T
    Med Sci Monit; 2020 Aug; 26():e923934. PubMed ID: 32756534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics analyses of gene expression profile identify key genes and functional pathways involved in cutaneous lupus erythematosus.
    Gao ZY; Su LC; Wu QC; Sheng JE; Wang YL; Dai YF; Chen AP; He SS; Huang X; Yan GQ
    Clin Rheumatol; 2022 Feb; 41(2):437-452. PubMed ID: 34553293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of key genes and pathways in castrate-resistant prostate cancer by integrated bioinformatics analysis.
    Wu YP; Ke ZB; Lin F; Wen YA; Chen S; Li XD; Chen SH; Sun XL; Huang JB; Zheng QS; Xue XY; Wei Y; Xu N
    Pathol Res Pract; 2020 Oct; 216(10):153109. PubMed ID: 32853947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting key genes associated with ovarian cancer based on differential expression network.
    Lu X; Wang J; Shan X; Li Y
    J BUON; 2017; 22(1):48-57. PubMed ID: 28365935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of key genes in Ankylosing spondylitis.
    Xu ZY; Zhou C; Zhang KF; Zheng YP
    Immunol Lett; 2018 Dec; 204():60-66. PubMed ID: 30321561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gender-specific SBNO2 and VPS13B as a potential driver of osteoporosis development in male ankylosing spondylitis.
    Li T; Liu WB; Tian FF; Jiang JJ; Wang Q; Hu FQ; Hu WH; Zhang XS
    Osteoporos Int; 2021 Feb; 32(2):311-320. PubMed ID: 32803317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDGFRB as a potential therapeutic target of ankylosing spondylitis: validation following bioinformatics analysis.
    Feng X; Zhu S; Yan Z; Wang C; Tong W; Xu W
    Cell Mol Biol (Noisy-le-grand); 2020 Sep; 66(6):127-134. PubMed ID: 33040798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Associated with Occurrence and Prognosis of Oral Squamous Cell Carcinoma.
    Ge Y; Li W; Ni Q; He Y; Chu J; Wei P
    Med Sci Monit; 2019 Sep; 25():7272-7288. PubMed ID: 31562292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy.
    Li X; Wang C; Zhang X; Liu J; Wang Y; Li C; Guo D
    Hereditas; 2020 Oct; 157(1):42. PubMed ID: 33099311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.