These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 29970846)
1. Development of a Modular Board for EEG Signal Acquisition. Uktveris T; Jusas V Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970846 [TBL] [Abstract][Full Text] [Related]
2. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring. von Luhmann A; Wabnitz H; Sander T; Muller KR IEEE Trans Biomed Eng; 2017 Jun; 64(6):1199-1210. PubMed ID: 28113241 [TBL] [Abstract][Full Text] [Related]
3. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements. Yu YH; Lu SW; Chuang CH; King JT; Chang CL; Chen SA; Chen SF; Lin CT IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):806-13. PubMed ID: 26780814 [TBL] [Abstract][Full Text] [Related]
4. Portable brain-computer interface based on novel convolutional neural network. Zhang Y; Zhang X; Sun H; Fan Z; Zhong X Comput Biol Med; 2019 Apr; 107():248-256. PubMed ID: 30856388 [TBL] [Abstract][Full Text] [Related]
5. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform. Lovelace JA; Witt TS; Beyette FR Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6361-4. PubMed ID: 24111196 [TBL] [Abstract][Full Text] [Related]
6. Open Ephys electroencephalography (Open Ephys + EEG): a modular, low-cost, open-source solution to human neural recording. Black C; Voigts J; Agrawal U; Ladow M; Santoyo J; Moore C; Jones S J Neural Eng; 2017 Jun; 14(3):035002. PubMed ID: 28266930 [TBL] [Abstract][Full Text] [Related]
7. Validation and Benchmarking of a Wearable EEG Acquisition Platform for Real-World Applications. Valentin O; Ducharme M; Cretot-Richert G; Monsarrat-Chanon H; Viallet G; Delnavaz A; Voix J IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):103-111. PubMed ID: 30334770 [TBL] [Abstract][Full Text] [Related]
8. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices. Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301 [TBL] [Abstract][Full Text] [Related]
9. Low-Power High-Input-Impedance EEG Signal Acquisition SoC With Fully Integrated IA and Signal-Specific ADC for Wearable Applications. Tohidi M; Kargaard Madsen J; Moradi F IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1437-1450. PubMed ID: 31443053 [TBL] [Abstract][Full Text] [Related]
10. Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Dias NS; Carmo JP; Mendes PM; Correia JH Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322 [TBL] [Abstract][Full Text] [Related]
11. A Wirelessly Powered Scattered Neural Recording Wearable System. Han Y; Zhao L; Stephany RG; Hsieh JC; Wang H; Jia Y IEEE Trans Biomed Circuits Syst; 2024 Aug; 18(4):734-745. PubMed ID: 38713579 [TBL] [Abstract][Full Text] [Related]
12. CereBridge: An Efficient, FPGA-based Real-Time Processing Platform for True Mobile Brain-Computer Interfaces. Wahalla MN; Vaya GP; Blume H Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4046-4050. PubMed ID: 33018887 [TBL] [Abstract][Full Text] [Related]
13. A TDM-Based 16-Channel AFE ASIC With Enhanced System-Level CMRR for Wearable EEG Recording With Dry Electrodes. Tang T; Goh WL; Yao L; Gao Y IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):516-524. PubMed ID: 32167908 [TBL] [Abstract][Full Text] [Related]
14. A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL. Haberman MA; Spinelli EM IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):614-8. PubMed ID: 23853262 [TBL] [Abstract][Full Text] [Related]
15. Low noise and high CMRR front-end amplifier dedicated to portable EEG acquisition system. Chebli R; Sawan M Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2523-6. PubMed ID: 24110240 [TBL] [Abstract][Full Text] [Related]
16. An Energy-Efficient CMOS Dual-Mode Array Architecture for High-Density ECoG-Based Brain-Machine Interfaces. Malekzadeh-Arasteh O; Pu H; Lim J; Liu CY; Do AH; Nenadic Z; Heydari P IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):332-342. PubMed ID: 31902769 [TBL] [Abstract][Full Text] [Related]
17. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors. Wu SL; Liao LD; Liou CH; Chen SA; Ko LW; Chen BW; Wang PS; Chen SF; Lin CT Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1793-7. PubMed ID: 23366259 [TBL] [Abstract][Full Text] [Related]
19. [Portable Multi Channel EEG Signal Acquisition System]. Le H; Zhu Z; Yuan S; Liu Z; Lin G; Ye J; Zhang X Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jul; 46(4):404-407. PubMed ID: 35929155 [TBL] [Abstract][Full Text] [Related]
20. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection. Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]