These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29970873)

  • 1. Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0.
    Zheng X; Wang M; Ordieres-Meré J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical Activity Recognition Based on a Parallel Approach for an Ensemble of Machine Learning and Deep Learning Classifiers.
    Abid M; Khabou A; Ouakrim Y; Watel H; Chemcki S; Mitiche A; Benazza-Benyahia A; Mezghani N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances.
    Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors.
    Cuperman R; Jansen KMB; Ciszewski MG
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personalized Human Activity Recognition Based on Integrated Wearable Sensor and Transfer Learning.
    Fu Z; He X; Wang E; Huo J; Huang J; Wu D
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
    Li F; Shirahama K; Nisar MA; Köping L; Grzegorzek M
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29495310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Enhanced Internet of Things for Activity Recognition in Post-Stroke Rehabilitation.
    Jin F; Zou M; Peng X; Lei H; Ren Y
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):3851-3859. PubMed ID: 37963004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Segmentation Scheme with Multi-Probability Threshold for Human Activity Recognition Using Wearable Sensors.
    Zhou B; Wang C; Huan Z; Li Z; Chen Y; Gao G; Li H; Dong C; Liang J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature Fusion of a Deep-Learning Algorithm into Wearable Sensor Devices for Human Activity Recognition.
    Yen CT; Liao JX; Huang YK
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.