BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29971050)

  • 21. N-acetylgalatosamine-Mediated Regulation of the
    Afzal M; Shafeeq S; Ahmed H; Kuipers OP
    Front Cell Infect Microbiol; 2016; 6():101. PubMed ID: 27672623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational insights into the binding modes of Sr-Rex with cofactor NADH/NAD+ and operator DNA.
    Chu Y; Li W; Wang J; Liu G; Tang Y
    J Mol Model; 2013 Aug; 19(8):3143-51. PubMed ID: 23615679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Cloning and expression of the redox-sensing transcriptional repressor Rex and in vitro DNA-binding assay of the Rex and rex operator in Streptomyces rimosus M4018].
    Shen J; Tang Z; Xiao C; Guo M
    Wei Sheng Wu Xue Bao; 2012 Jan; 52(1):38-43. PubMed ID: 22489458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Regulatory NADH/NAD+ Redox Biosensor for Bacteria.
    Liu Y; Landick R; Raman S
    ACS Synth Biol; 2019 Feb; 8(2):264-273. PubMed ID: 30633862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Regulation of the AdcR Regulon in Streptococcus pneumoniae Depends Both on Zn(2+)- and Ni(2+)-Availability.
    Manzoor I; Shafeeq S; Afzal M; Kuipers OP
    Front Cell Infect Microbiol; 2015; 5():91. PubMed ID: 26697415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maltose-Dependent Transcriptional Regulation of the mal Regulon by MalR in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Manzoor I; Kuipers OP
    PLoS One; 2015; 10(6):e0127579. PubMed ID: 26030923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
    Wang E; Bauer MC; Rogstam A; Linse S; Logan DT; von Wachenfeldt C
    Mol Microbiol; 2008 Jul; 69(2):466-78. PubMed ID: 18485070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of
    Zhu H; Wang Y; Ni Y; Zhou J; Han L; Yu Z; Mao A; Wang D; Fan H; He K
    Front Cell Infect Microbiol; 2018; 8():317. PubMed ID: 30280091
    [No Abstract]   [Full Text] [Related]  

  • 29. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster.
    Afzal M; Shafeeq S; Ahmed H; Kuipers OP
    Appl Environ Microbiol; 2015 May; 81(9):3121-31. PubMed ID: 25724955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum.
    Wietzke M; Bahl H
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):749-61. PubMed ID: 22576944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome analysis of Streptococcus pneumoniae D39 in the presence of cobalt.
    Manzoor I; Shafeeq S; Kuipers OP
    Genom Data; 2015 Dec; 6():151-3. PubMed ID: 26697359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic and transcriptional response of Escherichia coli with a NADP(+)-dependent glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans.
    Centeno-Leija S; Utrilla J; Flores N; Rodriguez A; Gosset G; Martinez A
    Antonie Van Leeuwenhoek; 2013 Dec; 104(6):913-24. PubMed ID: 23989925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-acetylglucosamine-Mediated Expression of
    Afzal M; Shafeeq S; Manzoor I; Henriques-Normark B; Kuipers OP
    Front Cell Infect Microbiol; 2016; 6():158. PubMed ID: 27900287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Presence of NAD+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Hino T
    FEMS Microbiol Lett; 2006 Apr; 257(1):17-23. PubMed ID: 16553827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum.
    Zheng T; Lanahan AA; Lynd LR; Olson DG
    PLoS One; 2018; 13(4):e0195143. PubMed ID: 29621294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2.
    Afzal M; Shafeeq S; Kuipers OP
    Front Microbiol; 2015; 6():72. PubMed ID: 25717320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the ROK-family transcriptional regulator RokA of Streptococcus pneumoniae D39.
    Shafeeq S; Kloosterman TG; Rajendran V; Kuipers OP
    Microbiology (Reading); 2012 Dec; 158(Pt 12):2917-2926. PubMed ID: 23082033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct structural features of Rex-family repressors to sense redox levels in anaerobes and aerobes.
    Zheng Y; Ko TP; Sun H; Huang CH; Pei J; Qiu R; Wang AH; Wiegel J; Shao W; Guo RT
    J Struct Biol; 2014 Dec; 188(3):195-204. PubMed ID: 25463021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional profiling of UlaR-regulated genes in Streptococcus pneumoniae.
    Shafeeq S; Afzal M; Henriques-Normark B; Kuipers OP
    Genom Data; 2015 Jun; 4():57-9. PubMed ID: 26484177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding mode of the oxidized α-anomer of NAD+ to RSP, a Rex-family repressor.
    Zheng Y; Ko TP; Yang Y; Shao W; Guo RT
    Biochem Biophys Res Commun; 2015 Jan; 456(3):733-6. PubMed ID: 25527330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.