These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 2997118)
1. Isolation and analysis of genes involved in siderophore biosynthesis in plant-growth-stimulating Pseudomonas putida WCS358. Marugg JD; van Spanje M; Hoekstra WP; Schippers B; Weisbeek PJ J Bacteriol; 1985 Nov; 164(2):563-70. PubMed ID: 2997118 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of a gene encoding an outer membrane protein required for siderophore-mediated uptake of Fe3+ in Pseudomonas putida WCS358. Marugg JD; de Weger LA; Nielander HB; Oorthuizen M; Recourt K; Lugtenberg B; van der Hofstad GA; Weisbeek PJ J Bacteriol; 1989 May; 171(5):2819-26. PubMed ID: 2540157 [TBL] [Abstract][Full Text] [Related]
3. Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein. Venturi V; Ottevanger C; Bracke M; Weisbeek P Mol Microbiol; 1995 Mar; 15(6):1081-93. PubMed ID: 7623664 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Venturi V; Ottevanger C; Leong J; Weisbeek PJ Mol Microbiol; 1993 Oct; 10(1):63-73. PubMed ID: 7968519 [TBL] [Abstract][Full Text] [Related]
5. Identification of an additional ferric-siderophore uptake gene clustered with receptor, biosynthesis, and fur-like regulatory genes in fluorescent Pseudomonas sp. strain M114. O'Sullivan DJ; Morris J; O'Gara F Appl Environ Microbiol; 1990 Jul; 56(7):2056-64. PubMed ID: 2143887 [TBL] [Abstract][Full Text] [Related]
6. Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain. Moores JC; Magazin M; Ditta GS; Leong J J Bacteriol; 1984 Jan; 157(1):53-8. PubMed ID: 6690426 [TBL] [Abstract][Full Text] [Related]
7. Amplification of the groESL operon in Pseudomonas putida increases siderophore gene promoter activity. Venturi V; Wolfs K; Leong J; Weisbeek PJ Mol Gen Genet; 1994 Oct; 245(1):126-32. PubMed ID: 7845355 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of the exbB, exbD and tonB genes of Pseudomonas putida WCS358: their involvement in ferric-pseudobactin transport. Bitter W; Tommassen J; Weisbeek PJ Mol Microbiol; 1993 Jan; 7(1):117-30. PubMed ID: 8437515 [TBL] [Abstract][Full Text] [Related]
9. An iron-antagonized fungistatic agent that is not required for iron assimilation from a fluorescent rhizosphere pseudomonad. Gill PR; Warren GJ J Bacteriol; 1988 Jan; 170(1):163-70. PubMed ID: 2826392 [TBL] [Abstract][Full Text] [Related]
10. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa. Visca P; Ciervo A; Orsi N J Bacteriol; 1994 Feb; 176(4):1128-40. PubMed ID: 8106324 [TBL] [Abstract][Full Text] [Related]
11. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358. Marugg JD; Nielander HB; Horrevoets AJ; van Megen I; van Genderen I; Weisbeek PJ J Bacteriol; 1988 Apr; 170(4):1812-9. PubMed ID: 2450869 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of the pupB gene encoding an inducible ferric-pseudobactin receptor of Pseudomonas putida WCS358. Koster M; van de Vossenberg J; Leong J; Weisbeek PJ Mol Microbiol; 1993 May; 8(3):591-601. PubMed ID: 8392140 [TBL] [Abstract][Full Text] [Related]
13. Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. de Weger LA; van Arendonk JJ; Recourt K; van der Hofstad GA; Weisbeek PJ; Lugtenberg B J Bacteriol; 1988 Oct; 170(10):4693-8. PubMed ID: 2971647 [TBL] [Abstract][Full Text] [Related]
14. Cloning a genomic region required for a high-affinity iron-uptake system in Rhizobium meliloti 1021. Gill PR; Neilands JB Mol Microbiol; 1989 Sep; 3(9):1183-9. PubMed ID: 2552263 [TBL] [Abstract][Full Text] [Related]
15. Identification of genes involved in the sequestration of iron in mycobacteria: the ferric exochelin biosynthetic and uptake pathways. Fiss EH; Yu S; Jacobs WR Mol Microbiol; 1994 Nov; 14(3):557-69. PubMed ID: 7885234 [TBL] [Abstract][Full Text] [Related]
17. Cosmid cloning of five Zymomonas trp genes by complementation of Escherichia coli and Pseudomonas putida trp mutants. Eddy CK; Smith OH; Noel KD J Bacteriol; 1988 Jul; 170(7):3158-63. PubMed ID: 2838460 [TBL] [Abstract][Full Text] [Related]
18. Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N5-oxygenase gene. Wang J; Budde AD; Leong SA J Bacteriol; 1989 May; 171(5):2811-8. PubMed ID: 2523381 [TBL] [Abstract][Full Text] [Related]
19. Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Georgakopoulos DG; Hendson M; Panopoulos NJ; Schroth MN Appl Environ Microbiol; 1994 Aug; 60(8):2931-8. PubMed ID: 8085830 [TBL] [Abstract][Full Text] [Related]