BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 2997133)

  • 1. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transport pathways to nitrous oxide in Rhodobacter species.
    Richardson DJ; McEwan AG; Jackson JB; Ferguson SJ
    Eur J Biochem; 1989 Nov; 185(3):659-69. PubMed ID: 2556273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata.
    Schultz JE; Weaver PF
    J Bacteriol; 1982 Jan; 149(1):181-90. PubMed ID: 6798016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The cytochrome oxidase system of light-anaerobically and dark-aerobically grown cells of Rhodopseudomonas capsulata].
    Klemme JH; Schlegel HG
    Arch Mikrobiol; 1969; 68(4):326-54. PubMed ID: 4315790
    [No Abstract]   [Full Text] [Related]  

  • 5. Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Dutton PL; Jackson JB
    Eur J Biochem; 1972 Nov; 30(3):495-510. PubMed ID: 4344828
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy transduction in photosynthetic bacteria. VI. Respiratory sites of energy conservation in membranes from dark-grown cells of Rhodopseudomonas capsulata.
    Baccarini Melandri A; Zannoni D; Melandri BA
    Biochim Biophys Acta; 1973 Sep; 314(3):298-311. PubMed ID: 4148029
    [No Abstract]   [Full Text] [Related]  

  • 7. A comparison of electron transport and photophosphorylation systems of Rhodopseudomonas capsulata and Rhodospirillum rubrum. Effects of antimycin A and dibromothymoquinone.
    Gromet-Elhanan Z; Gest H
    Arch Microbiol; 1978 Jan; 116(1):29-34. PubMed ID: 414685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome c2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Correlation with photoinhibition studies.
    Richardson DJ; Bell LC; McEwan AG; Jackson JB; Ferguson SJ
    Eur J Biochem; 1991 Aug; 199(3):677-83. PubMed ID: 1651241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron flow to dimethylsulphoxide or trimethylamine-N-oxide generates a membrane potential in Rhodopseudomonas capsulata.
    McEwan AG; Ferguson SJ; Jackson JB
    Arch Microbiol; 1983 Dec; 136(4):300-5. PubMed ID: 6667089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V; Kirchner G; Pfennig N
    Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function and localization of ubiquinone in the NADH and succinate oxidase systems of Rhodopseudomonas palustris.
    King MT; Drews G
    Biochim Biophys Acta; 1973 May; 305(2):230-48. PubMed ID: 4147456
    [No Abstract]   [Full Text] [Related]  

  • 12. Electron transport to nitrous oxide in Paracoccus denitrificans.
    Boogerd FC; van Verseveld HW; Stouthamer AH
    FEBS Lett; 1980 May; 113(2):279-84. PubMed ID: 6248362
    [No Abstract]   [Full Text] [Related]  

  • 13. [Nitrogenase and hydrogenase activities of the non-sulfur purple bacteria, Rhodopseudomonas spheroides and Rhodopseudomonas capsulata].
    Serebriakova LT; Teslia EA; Gogotov IN; Kondrat'eva EN
    Mikrobiologiia; 1980; 49(3):401-7. PubMed ID: 6995815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Thiosulfate oxidation by nonsulfur purple bacteria].
    Keppen OI; Pedan LV; Rodova NA
    Mikrobiologiia; 1980; 49(5):682-6. PubMed ID: 6777642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata.
    Zannoni D; Melandri BA; Baccarini-Melandri A
    Biochim Biophys Acta; 1976 Mar; 423(3):413-30. PubMed ID: 177045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides.
    Bowyer JR; Crofts AR
    Biochim Biophys Acta; 1981 Jul; 636(2):218-33. PubMed ID: 6269602
    [No Abstract]   [Full Text] [Related]  

  • 17. The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris.
    King MT; Drews G
    Arch Microbiol; 1975 Mar; 102(3):219-31. PubMed ID: 168826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction.
    Berks BC; Baratta D; Richardson J; Ferguson SJ
    Eur J Biochem; 1993 Mar; 212(2):467-76. PubMed ID: 8383047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation.
    Robertson DE; Davidson E; Prince RC; van den Berg WH; Marrs BL; Dutton PL
    J Biol Chem; 1986 Jan; 261(2):584-91. PubMed ID: 3001072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxidative phosphorylation by membrane fragments from Rhodopseudomonas capsulata].
    Klemme JH
    Zentralbl Bakteriol Orig; 1970; 212(2):461-7. PubMed ID: 5444288
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.