These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 2997137)
1. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. Gay P; Le Coq D; Steinmetz M; Berkelman T; Kado CI J Bacteriol; 1985 Nov; 164(2):918-21. PubMed ID: 2997137 [TBL] [Abstract][Full Text] [Related]
2. Identification of insertion sequence element IS427 in pTiT37 plasmid DNA of an Agrobacterium tumefaciens T37 isolate. De Meirsman C; Croes C; Desair J; Verreth C; Van Gool A; Vanderleyden J Plasmid; 1989 Mar; 21(2):129-37. PubMed ID: 2544912 [TBL] [Abstract][Full Text] [Related]
3. Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Hynes MF; Quandt J; O'Connell MP; Pühler A Gene; 1989 May; 78(1):111-20. PubMed ID: 2548927 [TBL] [Abstract][Full Text] [Related]
4. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. Jäger W; Schäfer A; Pühler A; Labes G; Wohlleben W J Bacteriol; 1992 Aug; 174(16):5462-5. PubMed ID: 1644774 [TBL] [Abstract][Full Text] [Related]
5. Direct selection of cloned DNA in Bacillus subtilis based on sucrose-induced lethality. Bramucci MG; Nagarajan V Appl Environ Microbiol; 1996 Nov; 62(11):3948-53. PubMed ID: 8899981 [TBL] [Abstract][Full Text] [Related]
6. Modified RP4 and Tn5-Mob derivatives for facilitated manipulation of large plasmids in Gram-negative bacteria. Quandt J; Clark RG; Venter AP; Clark SR; Twelker S; Hynes MF Plasmid; 2004 Jul; 52(1):1-12. PubMed ID: 15212888 [TBL] [Abstract][Full Text] [Related]
7. Mobilization and transfer of Azospirillum lipoferum plasmid by the Tn5-Mob transposon into a plasmid-free Agrobacterium tumefaciens strain. Bally R; Givaudan A Can J Microbiol; 1988 Dec; 34(12):1354-7. PubMed ID: 2852995 [TBL] [Abstract][Full Text] [Related]
8. Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. Jäger W; Schäfer A; Kalinowski J; Pühler A FEMS Microbiol Lett; 1995 Feb; 126(1):1-6. PubMed ID: 7896070 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of insertion sequence elements from gram-negative bacteria by using new broad-host-range, positive selection vectors. Simon R; Hötte B; Klauke B; Kosier B J Bacteriol; 1991 Feb; 173(4):1502-8. PubMed ID: 1847366 [TBL] [Abstract][Full Text] [Related]
10. A broad-host-range plasmid for isolating mobile genetic elements in gram-negative bacteria. Schneider D; Faure D; Noirclerc-Savoye M; Barrière AC; Coursange E; Blot M Plasmid; 2000 Sep; 44(2):201-7. PubMed ID: 10964631 [TBL] [Abstract][Full Text] [Related]
11. Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. Pelicic V; Reyrat JM; Gicquel B J Bacteriol; 1996 Feb; 178(4):1197-9. PubMed ID: 8576057 [TBL] [Abstract][Full Text] [Related]
12. Cloning and preliminary characterization of the sacS locus from Bacillus subtilis which controls the regulation of the exoenzyme levansucrase. Aymerich S; Steinmetz M Mol Gen Genet; 1987 Jun; 208(1-2):114-20. PubMed ID: 3039303 [TBL] [Abstract][Full Text] [Related]
13. Levansucrase: a tool to study protein secretion in Bacillus subtilis. Nagarajan V; Borchert TV Res Microbiol; 1991; 142(7-8):787-92. PubMed ID: 1784817 [TBL] [Abstract][Full Text] [Related]
14. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Steinmetz M; Le Coq D; Aymerich S; Gonzy-Tréboul G; Gay P Mol Gen Genet; 1985; 200(2):220-8. PubMed ID: 2993818 [TBL] [Abstract][Full Text] [Related]
15. MudSacI, a transposon with strong selectable and counterselectable markers: use for rapid mapping of chromosomal mutations in Salmonella typhimurium. Lawes M; Maloy S J Bacteriol; 1995 Mar; 177(5):1383-7. PubMed ID: 7868615 [TBL] [Abstract][Full Text] [Related]
16. [Genetic analysis of sacB, the structural gene of a secreted enzyme, levansucrase of Bacillus subtilis Marburg]. Steinmetz M; Le Coq D; Djemia HB; Gay P Mol Gen Genet; 1983; 191(1):138-44. PubMed ID: 6412036 [TBL] [Abstract][Full Text] [Related]
17. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Débarbouillé M; Martin-Verstraete I; Kunst F; Rapoport G Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9092-6. PubMed ID: 1924373 [TBL] [Abstract][Full Text] [Related]
18. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Quandt J; Hynes MF Gene; 1993 May; 127(1):15-21. PubMed ID: 8486283 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. Chiou CS; Jones AL J Bacteriol; 1993 Feb; 175(3):732-40. PubMed ID: 8380801 [TBL] [Abstract][Full Text] [Related]
20. Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among gram-positive and gram-negative bacteria. Charpentier E; Gerbaud G; Courvalin P J Bacteriol; 1999 Jun; 181(11):3368-74. PubMed ID: 10348847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]