These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29971530)

  • 1. Molecular dynamics simulations suggest why the A2058G mutation in 23S RNA results in bacterial resistance against clindamycin.
    Kulczycka-Mierzejewska K; Sadlej J; Trylska J
    J Mol Model; 2018 Jul; 24(8):191. PubMed ID: 29971530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance.
    Tu D; Blaha G; Moore PB; Steitz TA
    Cell; 2005 Apr; 121(2):257-70. PubMed ID: 15851032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single and dual mutations at positions 2058, 2503 and 2504 of 23S rRNA and their relationship to resistance to antibiotics that target the large ribosomal subunit.
    Li BB; Wu CM; Wang Y; Shen JZ
    J Antimicrob Chemother; 2011 Sep; 66(9):1983-6. PubMed ID: 21700630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action.
    Dunkle JA; Xiong L; Mankin AS; Cate JH
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17152-7. PubMed ID: 20876128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clindamycin binding to ribosomes revisited: foot printing and computational detection of two binding sites within the peptidyl transferase center.
    Kostopoulou ON; Papadopoulos G; Kouvela EC; Kalpaxis DL
    Pharmazie; 2013 Jul; 68(7):616-21. PubMed ID: 23923646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation.
    Jewett MC; Fritz BR; Timmerman LE; Church GM
    Mol Syst Biol; 2013 Jun; 9():678. PubMed ID: 23799452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel.
    Long KS; Porse BT
    Nucleic Acids Res; 2003 Dec; 31(24):7208-15. PubMed ID: 14654696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications.
    Halling SM; Jensen AE
    BMC Microbiol; 2006 Oct; 6():84. PubMed ID: 17014718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A noncanonical binding site of chloramphenicol revealed via molecular dynamics simulations.
    Makarov GI; Makarova TM
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2940-2947. PubMed ID: 30248377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503.
    Kehrenberg C; Schwarz S; Jacobsen L; Hansen LH; Vester B
    Mol Microbiol; 2005 Aug; 57(4):1064-73. PubMed ID: 16091044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structures of four macrolide antibiotics bound to the large ribosomal subunit.
    Hansen JL; Ippolito JA; Ban N; Nissen P; Moore PB; Steitz TA
    Mol Cell; 2002 Jul; 10(1):117-28. PubMed ID: 12150912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding site of the bridged macrolides in the Escherichia coli ribosome.
    Xiong L; Korkhin Y; Mankin AS
    Antimicrob Agents Chemother; 2005 Jan; 49(1):281-8. PubMed ID: 15616307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome.
    Burakovsky DE; Sergiev PV; Steblyanko MA; Konevega AL; Bogdanov AA; Dontsova OA
    FEBS Lett; 2011 Oct; 585(19):3073-8. PubMed ID: 21875584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA.
    Douthwaite S
    Nucleic Acids Res; 1992 Sep; 20(18):4717-20. PubMed ID: 1383931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in 23S rRNA and ribosomal protein L4 account for resistance in pneumococcal strains selected in vitro by macrolide passage.
    Tait-Kamradt A; Davies T; Cronan M; Jacobs MR; Appelbaum PC; Sutcliffe J
    Antimicrob Agents Chemother; 2000 Aug; 44(8):2118-25. PubMed ID: 10898684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA.
    Khaitovich P; Tenson T; Kloss P; Mankin AS
    Biochemistry; 1999 Feb; 38(6):1780-8. PubMed ID: 10026258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling new features of clindamycin interaction with functional ribosomes and dependence of the drug potency on polyamines.
    Kouvela EC; Petropoulos AD; Kalpaxis DL
    J Biol Chem; 2006 Aug; 281(32):23103-10. PubMed ID: 16760473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrolide resistance by ribosomal mutation in clinical isolates of Streptococcus pneumoniae from the PROTEKT 1999-2000 study.
    Farrell DJ; Douthwaite S; Morrissey I; Bakker S; Poehlsgaard J; Jakobsen L; Felmingham D
    Antimicrob Agents Chemother; 2003 Jun; 47(6):1777-83. PubMed ID: 12760848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mutations in the Escherichia coli 23S rRNA increase the rate of peptidyl-tRNA dissociation from the ribosome].
    Maĭvali U; Saarma U; Remme Ia
    Mol Biol (Mosk); 2001; 35(4):666-71. PubMed ID: 11524953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A crevice adjoining the ribosome tunnel: hints for cotranslational folding.
    Amit M; Berisio R; Baram D; Harms J; Bashan A; Yonath A
    FEBS Lett; 2005 Jun; 579(15):3207-13. PubMed ID: 15943964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.