These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29971739)

  • 1. Biofilm architecture on different substrates of an Oculatella subterranea (Cyanobacteria) strain isolated from Pompeii archaeological site (Italy).
    Del Mondo A; Pinto G; Carbone DA; Pollio A; De Natale A
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26079-26089. PubMed ID: 29971739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico.
    Ramirez M; Hernandez-Marine M; Novelo E; Roldan M
    Biofouling; 2010 May; 26(4):399-409. PubMed ID: 20182932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinhibition of cyanobacteria and its application in cultural heritage conservation.
    Hsieh P; Pedersen JZ; Bruno L
    Photochem Photobiol; 2014; 90(3):533-43. PubMed ID: 24320697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of Environmental Biofilms Colonising Wall Paintings of the Fornelle Cave in the Archaeological Site of Cales.
    De Luca D; Caputo P; Perfetto T; Cennamo P
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface colour: An overlooked aspect in the study of cyanobacterial biofilm formation.
    Gambino M; Sanmartín P; Longoni M; Villa F; Mitchell R; Cappitelli F
    Sci Total Environ; 2019 Apr; 659():342-353. PubMed ID: 30599353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking biofilm spatial structure to real-time microscopic oxygen decay imaging.
    Rubol S; Freixa A; Sanchez-Vila X; Romaní AM
    Biofouling; 2018 Feb; 34(2):200-211. PubMed ID: 29405091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm colonization of metamorphic lithotypes of a renaissance cathedral exposed to urban atmosphere.
    Gulotta D; Villa F; Cappitelli F; Toniolo L
    Sci Total Environ; 2018 Oct; 639():1480-1490. PubMed ID: 29929311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms.
    Vázquez-Nion D; Silva B; Prieto B
    Sci Total Environ; 2018 Jan; 610-611():44-54. PubMed ID: 28802109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weathering of a Roman Mosaic-A Biological and Quantitative Study on In Vitro Colonization of Calcareous Tesserae by Phototrophic Microorganisms.
    Marasco A; Nocerino S; Pinto G; Pollio A; Trojsi G; Natale A
    PLoS One; 2016; 11(10):e0164487. PubMed ID: 27783631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.
    Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B
    Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodeterioration of stone monuments: Studies on the influence of bioreceptivity on cyanobacterial biofilm growth and on the biocidal efficacy of essential oils in natural hydrogel.
    Gabriele F; Ranaldi R; Bruno L; Casieri C; Rugnini L; Spreti N
    Sci Total Environ; 2023 Apr; 870():161901. PubMed ID: 36736398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial biofilm community structure and composition on the lithic substrates of Herculaneum Suburban Baths.
    De Natale A; Mele BH; Cennamo P; Del Mondo A; Petraretti M; Pollio A
    PLoS One; 2020; 15(5):e0232512. PubMed ID: 32365130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desmids and biofilms of freshwater wetlands: development and microarchitecture.
    Domozych DS; Domozych CR
    Microb Ecol; 2008 Jan; 55(1):81-93. PubMed ID: 17450460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algal and cyanobacterial biofilms on calcareous historic buildings.
    Crispim CA; Gaylarde PM; Gaylarde CC
    Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.
    Vázquez-Nion D; Silva B; Troiano F; Prieto B
    Biofouling; 2017 Jan; 33(1):24-35. PubMed ID: 27911078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does green light influence the fluorescence properties and structure of phototrophic biofilms?
    Roldán M; Oliva F; Gónzalez del Valle MA; Saiz-Jimenez C; Hernández-Mariné M
    Appl Environ Microbiol; 2006 Apr; 72(4):3026-31. PubMed ID: 16598012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confocal laser scanning microscopy as a tool to determine cyanobacteria biomass in microbial mats.
    Solé A; Gaju N; Méndez-Alvarez S; Esteve I
    J Microsc; 2001 Dec; 204(Pt 3):258-62. PubMed ID: 11903803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal laser scanning microscopy image analysis for cyanobacterial biomass determined at microscale level in different microbial mats.
    Solé A; Diestra E; Esteve I
    Microb Ecol; 2009 May; 57(4):649-56. PubMed ID: 18982381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The susceptibility of weathered versus unweathered schist to biological colonization in the Côa Valley Archaeological Park (north-east Portugal).
    Marques J; Vázquez-Nion D; Paz-Bermúdez G; Prieto B
    Environ Microbiol; 2015 May; 17(5):1805-16. PubMed ID: 25331293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies.
    Camacho A; Rochera C; Silvestre JJ; Vicente E; Hahn MW
    Microb Ecol; 2005 Aug; 50(2):172-84. PubMed ID: 16211325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.