These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29971745)

  • 1. Kinetics, mechanism, and global warming potentials of HFO-1234yf initiated by O
    Paul S; Deka RC; Gour NK
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26144-26156. PubMed ID: 29971745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of H-atom abstraction reactions from CH
    Li MY; Bai FY; Pan XM
    J Mol Graph Model; 2019 Dec; 93():107453. PubMed ID: 31569010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozone and TFA impacts in North America from degradation of 2,3,3,3-Tetrafluoropropene (HFO-1234yf), a potential greenhouse gas replacement.
    Luecken DJ; L Waterland R; Papasavva S; Taddonio KN; Hutzell WT; Rugh JP; Andersen SO
    Environ Sci Technol; 2010 Jan; 44(1):343-8. PubMed ID: 19994849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of 2,3,3,3-tetrafluoropropene (HFO-1234yf) in rabbits.
    Schuster P; Bertermann R; Rusch GM; Dekant W
    Toxicol Appl Pharmacol; 2010 May; 244(3):247-53. PubMed ID: 20045018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
    Schuster P; Bertermann R; Snow TA; Han X; Rusch GM; Jepson GW; Dekant W
    Toxicol Appl Pharmacol; 2008 Dec; 233(2):323-32. PubMed ID: 18817801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical calculations on the mechanism and kinetics of ozone-initiated removal of p-coumaryl alcohol in the atmosphere.
    Sun Y; Chen X; Xu F; Wang X
    Chemosphere; 2020 Aug; 253():126744. PubMed ID: 32302911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis.
    Oliveira RC; Bauerfeldt GF
    J Chem Phys; 2012 Oct; 137(13):134306. PubMed ID: 23039598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal.
    Xiao W; Sun S; Yan S; Wu W; Sun J
    Chemosphere; 2022 Sep; 303(Pt 3):135142. PubMed ID: 35636604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric chemistry of CF3CF═CH2 and (Z)-CF3CF═CHF: Cl and NO3 rate coefficients, Cl reaction product yields, and thermochemical calculations.
    Papadimitriou VC; Lazarou YG; Talukdar RK; Burkholder JB
    J Phys Chem A; 2011 Jan; 115(2):167-81. PubMed ID: 21158462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf).
    Im J; Walshe-Langford GE; Moon JW; Löffler FE
    Environ Sci Technol; 2014 Nov; 48(22):13181-7. PubMed ID: 25329364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and Mechanistic Investigations of Atmospheric Oxidation of HFO-1345fz by OH Radical: Insights from Theory.
    Rao PK; Gejji SP
    J Phys Chem A; 2017 Jan; 121(3):595-607. PubMed ID: 28026954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and kinetic properties of NO3-initiated atmospheric degradation of DDT.
    Liu C; Li S; Gao R; Dang J; Wang W; Zhang Q
    J Environ Sci (China); 2014 Mar; 26(3):601-7. PubMed ID: 25079273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications.
    Sandhiya L; Kolandaivel P; Senthilkumar K
    J Phys Chem B; 2014 Apr; 118(13):3479-90. PubMed ID: 24611937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of the atmospheric implication for the reaction of
    Holtomo O; Ngue'zeo H; Nsangou M; Motapon O
    J Mol Graph Model; 2021 Jul; 106():107905. PubMed ID: 33984816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation pathways and kinetics of the 1,1,2,3-tetrafluoropropene (CF
    Kakati UP; Dowerah D; Deka RC; Gour NK; Paul S
    Environ Sci Process Impacts; 2024 Apr; 26(4):734-750. PubMed ID: 38426396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical investigation of the mechanism, kinetics and subsequent degradation products of the NO
    Zhang N; Bai F; Pan X
    Environ Sci Process Impacts; 2019 Dec; 21(12):2080-2092. PubMed ID: 31599916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and Properties of
    Schwabedissen J; Glodde T; Vishnevskiy YV; Stammler HG; Flierl L; Kornath AJ; Mitzel NW
    ChemistryOpen; 2020 Sep; 9(9):921-928. PubMed ID: 32913699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tropospheric degradation of 2-fluoropropene (CH
    Gour NK; Borthakur K; Paul S; Chandra Deka R
    Chemosphere; 2020 Jan; 238():124556. PubMed ID: 31422310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical method validation for the determination of 2,3,3,3-tetrafluoropropene in air samples using gas chromatography with flame ionization detection.
    Mawn MP; Kurtz K; Stahl D; Chalfant RL; Koban ME; Dawson BJ
    J Occup Environ Hyg; 2013; 10(11):583-9. PubMed ID: 24116663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OH-initiated mechanistic pathways and kinetics of camphene and fate of product radical: a DFT approach.
    Baruah SD; Gour NK; Sarma PJ; Deka RC
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2147-2156. PubMed ID: 29116529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.