These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29971864)

  • 41. Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers.
    Liang J; Chen Z; Yang G; Wang H; Ye F; Tao C; Fang G
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23152-23159. PubMed ID: 31184462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells.
    Li Y; Li S; Shen Y; Han X; Li Y; Yu Y; Huang M; Tao X
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47872-47881. PubMed ID: 36223533
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifunctional Polymer-Regulated SnO
    You S; Zeng H; Ku Z; Wang X; Wang Z; Rong Y; Zhao Y; Zheng X; Luo L; Li L; Zhang S; Li M; Gao X; Li X
    Adv Mater; 2020 Oct; 32(43):e2003990. PubMed ID: 32954577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Core-Shell ZnO@SnO
    Li Z; Wang R; Xue J; Xing X; Yu C; Huang T; Chu J; Wang KL; Dong C; Wei Z; Zhao Y; Wang ZK; Yang Y
    J Am Chem Soc; 2019 Nov; 141(44):17610-17616. PubMed ID: 31639300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergistic Optimization of Buried Interface by Multifunctional Organic-Inorganic Complexes for Highly Efficient Planar Perovskite Solar Cells.
    Liu H; Lu Z; Zhang W; Zhou H; Xia Y; Shi Y; Wang J; Chen R; Xia H; Wang HL
    Nanomicro Lett; 2023 Jun; 15(1):156. PubMed ID: 37337117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Embedding SnO
    Yang G; Li X; Zhao B; Liu C; Zhang T; Li Z; Liu Z; Li X
    Langmuir; 2022 May; 38(21):6752-6760. PubMed ID: 35593034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells.
    Mahmud MA; Elumalai NK; Upama MB; Wang D; Zarei L; Gonçales VR; Wright M; Xu C; Haque F; Uddin A
    Nanoscale; 2018 Jan; 10(2):773-790. PubMed ID: 29256572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 20.67%-Efficiency Inorganic CsPbI
    Zou H; Duan Y; Yang S; Xu D; Yang L; Cui J; Zhou H; Wu M; Wang J; Lei X; Zhang N; Liu Z
    Small; 2023 Jan; 19(2):e2206205. PubMed ID: 36399648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.
    Zhang W; Xiong J; Jiang L; Wang J; Mei T; Wang X; Gu H; Daoud WA; Li J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38467-38476. PubMed ID: 29027464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient Perovskite Indoor Photovoltaics with Open-Circuit Voltage of 1.15 V via Collaborative Optimization of CsPbI
    Jiang S; Bai Y; Xu Z; Wang F; Xia L; Yang Y; Li C; Tan Z
    Small Methods; 2022 Oct; 6(10):e2200624. PubMed ID: 36031396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Rutile TiO
    Wang Y; Wan J; Ding J; Hu JS; Wang D
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9414-9418. PubMed ID: 31041835
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable high-performance perovskite solar cells based on inorganic electron transporting bi-layers.
    Gu H; Zhao C; Zhang Y; Shao G
    Nanotechnology; 2018 Sep; 29(38):385401. PubMed ID: 29947612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Versatility of Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and High Stability.
    Meng X; Zhou J; Hou J; Tao X; Cheung SH; So SK; Yang S
    Adv Mater; 2018 May; 30(21):e1706975. PubMed ID: 29611234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Band Alignment Engineering Towards High Efficiency Carbon-Based Inorganic Planar CsPbIBr
    Zhu W; Zhang Z; Chai W; Zhang Q; Chen D; Lin Z; Chang J; Zhang J; Zhang C; Hao Y
    ChemSusChem; 2019 May; 12(10):2318-2325. PubMed ID: 30912615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Performance and Stability of TiO
    Zhuang Q; You G; Wang L; Lin X; Zou D; Zhen H; Ling Q
    ChemSusChem; 2019 Nov; 12(21):4824-4831. PubMed ID: 31496072
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells.
    Sun J; Li N; Dong L; Niu X; Zhao M; Xu Z; Zhou H; Shan C; Pan C
    Nanotechnology; 2021 Sep; 32(47):. PubMed ID: 33445158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanoscale Local Contacts Enable Inverted Inorganic Perovskite Solar Cells with 20.8 % Efficiency.
    Wang S; Qi S; Sun H; Wang P; Zhao Y; Zhang X
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202400018. PubMed ID: 38396209
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation of TiO
    Xue T; Li T; Chen D; Wang X; Guo K; Wang Q; Zhang F
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630085
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-temperature electrospray-processed SnO
    Mahmood K; Khalid A; Nawaz F; Mehran MT
    J Colloid Interface Sci; 2018 Dec; 532():387-394. PubMed ID: 30096532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alkali Metal Cations Modulate the Energy Level of SnO
    Zhao R; Deng Z; Zhang Z; Zhang J; Guo T; Xing Y; Liu X; Huang L; Hu Z; Zhu Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36711-36720. PubMed ID: 35938542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.