BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 29971874)

  • 21. Macromol. Rapid commun. 15/2014.
    Basak D; Kumar R; Ghosh S
    Macromol Rapid Commun; 2014 Aug; 35(15):1380. PubMed ID: 25088703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macromol. Rapid Commun. 10/2016.
    Winnacker M; Neumeier M; Zhang X; Papadakis CM; Rieger B
    Macromol Rapid Commun; 2016 May; 37(10):876. PubMed ID: 27184454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.
    Liu Y; Yang G; Ji H; Xiang T; Luo E; Zhou S
    Colloids Surf B Biointerfaces; 2017 Jun; 154():1-9. PubMed ID: 28268191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats.
    Mubyana K; Koppes RA; Lee KL; Cooper JA; Corr DT
    J Biomed Mater Res A; 2016 Nov; 104(11):2794-800. PubMed ID: 27355844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications.
    Aznar-Cervantes S; Roca MI; Martinez JG; Meseguer-Olmo L; Cenis JL; Moraleda JM; Otero TF
    Bioelectrochemistry; 2012 Jun; 85():36-43. PubMed ID: 22206726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Tissue Eng Part A; 2009 Nov; 15(11):3605-19. PubMed ID: 19496678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers.
    Briggs T; Arinzeh TL
    J Biomed Mater Res A; 2014 Mar; 102(3):674-84. PubMed ID: 23554256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering.
    Patlolla A; Arinzeh TL
    Biotechnol Bioeng; 2014 May; 111(5):1000-17. PubMed ID: 24264603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers.
    Zhu S; Jing W; Hu X; Huang Z; Cai Q; Ao Y; Yang X
    J Biomed Mater Res A; 2017 Dec; 105(12):3369-3383. PubMed ID: 28795778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.
    Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S
    Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells.
    Prabhakaran MP; Ghasemi-Mobarakeh L; Jin G; Ramakrishna S
    J Biosci Bioeng; 2011 Nov; 112(5):501-7. PubMed ID: 21813321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells.
    Shafiee A; Soleimani M; Chamheidari GA; Seyedjafari E; Dodel M; Atashi A; Gheisari Y
    J Biomed Mater Res A; 2011 Dec; 99(3):467-78. PubMed ID: 21887742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun silk-BMP-2 scaffolds for bone tissue engineering.
    Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL
    Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.
    Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH
    Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured biomaterials from electrospun demineralized bone matrix: a survey of processing and crosslinking strategies.
    Leszczak V; Place LW; Franz N; Popat KC; Kipper MJ
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9328-37. PubMed ID: 24865253
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.
    Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR
    J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications.
    Briggs T; Matos J; Collins G; Arinzeh TL
    J Biomed Mater Res A; 2015 Oct; 103(10):3117-27. PubMed ID: 25720595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Creating tissues from textiles: scalable nonwoven manufacturing techniques for fabrication of tissue engineering scaffolds.
    Tuin SA; Pourdeyhimi B; Loboa EG
    Biomed Mater; 2016 Feb; 11(1):015017. PubMed ID: 26908485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J
    Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.