These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 29971924)

  • 1. Boron(II) Cations: Interplay between Lewis-Pair-Acceptor and Electron-Donor Properties.
    Widera A; Vogler D; Wadepohl H; Kaifer E; Himmel HJ
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11456-11459. PubMed ID: 29971924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Synthesis and Chemistry of Unsymmetric Dicationic Diboranes and Their Use in Frustrated Lewis Pair-like Chemistry.
    Kistner L; Kowatsch D; Marz A; Kaifer E; Himmel HJ
    Chemistry; 2022 Mar; 28(13):e202104016. PubMed ID: 35061309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the nucleophilicity of electron-rich diborane(4) compounds with bridging guanidinate substituents by substitution.
    Horn J; Widera A; Litters S; Kaifer E; Himmel HJ
    Dalton Trans; 2018 Feb; 47(6):2009-2017. PubMed ID: 29345706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Halide-Coupled Double Electron Transfer with Electron-Rich Diboranes.
    Filbeck E; Cremer S; Jansen MCF; Kaifer E; Himmel HJ
    Chemistry; 2023 Dec; 29(72):e202302911. PubMed ID: 37728170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals.
    Hollister KK; Wentz KE; Gilliard RJ
    Acc Chem Res; 2024 May; 57(10):1510-1522. PubMed ID: 38708938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Electron Bonds in Frustrated Lewis Pair TPB Ligands: Boron Behaving as a Lewis Base.
    Kusevska E; Montero-Campillo MM; Mó O; Yáñez M
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6788-6792. PubMed ID: 28488324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron radical cations from the facile oxidation of electron-rich diborenes.
    Bissinger P; Braunschweig H; Damme A; Kupfer T; Krummenacher I; Vargas A
    Angew Chem Int Ed Engl; 2014 May; 53(22):5689-93. PubMed ID: 24711294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of donor-acceptor geometry and metal chelation on photophysical properties and applications of triarylboranes.
    Hudson ZM; Wang S
    Acc Chem Res; 2009 Oct; 42(10):1584-96. PubMed ID: 19558183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Free Nitrile Diboration through Activation by an Electron-Rich Diborane.
    Frick M; Kaifer E; Himmel HJ
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11645-11648. PubMed ID: 28722282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Metal Oxido Compounds with B(C
    Zwettler N; Mösch-Zanetti NC
    Chemistry; 2019 Apr; 25(24):6064-6076. PubMed ID: 30707470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iodine(III) Reagents in Radical Chemistry.
    Wang X; Studer A
    Acc Chem Res; 2017 Jul; 50(7):1712-1724. PubMed ID: 28636313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational insights into the acceptor chemistry of phosphenium cations.
    Ellis BD; Ragogna PJ; Macdonald CL
    Inorg Chem; 2004 Nov; 43(24):7857-67. PubMed ID: 15554651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Lewis Acidic Arylboronate Esters Capable of Colorimetric Turn-On Response.
    Oehlke A; Auer AA; Schreiter K; Friebe N; Spange S
    Chemistry; 2015 Dec; 21(49):17890-6. PubMed ID: 26489784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzodipyrrole-based Donor-Acceptor-type Boron Complexes as Tunable Near-infrared-Absorbing Materials.
    Nakamura T; Furukawa S; Nakamura E
    Chem Asian J; 2016 Jul; 11(14):2016-20. PubMed ID: 27311060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olefin-Borane Interactions in Donor-π-Acceptor Fluorophores that Undergo Frustrated-Lewis-Pair-Type Reactions.
    Oshimizu R; Ando N; Yamaguchi S
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202209394. PubMed ID: 35938732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of pentafluorophenyl boron reagents in the synthesis of heterocyclic and aromatic compounds.
    Melen RL
    Chem Commun (Camb); 2014 Feb; 50(10):1161-74. PubMed ID: 24292326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron transfer in complexes of B
    Vogler D; Wolf N; Kaifer E; Himmel HJ
    Dalton Trans; 2019 Oct; 48(38):14354-14366. PubMed ID: 31513209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron-Rich, Lewis Acidic Diborane Meets N-Heterocyclic Aromatics: Formation and Electron Transfer in Cyclophane Boranes.
    Widera A; Filbeck E; Wadepohl H; Kaifer E; Himmel HJ
    Chemistry; 2020 Mar; 26(15):3435-3440. PubMed ID: 31943435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frustrated Lewis Pairs Catalyzed Asymmetric Metal-Free Hydrogenations and Hydrosilylations.
    Meng W; Feng X; Du H
    Acc Chem Res; 2018 Jan; 51(1):191-201. PubMed ID: 29243918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Easy access to nucleophilic boron through diborane to magnesium boryl metathesis.
    Pécharman AF; Colebatch AL; Hill MS; McMullin CL; Mahon MF; Weetman C
    Nat Commun; 2017 Apr; 8():15022. PubMed ID: 28387308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.