BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29972222)

  • 1. Melanogenesis Inhibitors.
    Kumari S; Tien Guan Thng S; Kumar Verma N; Gautam HK
    Acta Derm Venereol; 2018 Nov; 98(10):924-931. PubMed ID: 29972222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downregulation of melanogenesis: drug discovery and therapeutic options.
    Pillaiyar T; Manickam M; Jung SH
    Drug Discov Today; 2017 Feb; 22(2):282-298. PubMed ID: 27693716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sesamol Inhibited Melanogenesis by Regulating Melanin-Related Signal Transduction in B16F10 Cells.
    Wu PY; You YJ; Liu YJ; Hou CW; Wu CS; Wen KC; Lin CY; Chiang HM
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Tyrosinase Inhibitors: Role of Herbals in the Treatment of Hyperpigmentary Disorders.
    Zaidi KU; Ali SA; Ali A; Naaz I
    Mini Rev Med Chem; 2019; 19(10):796-808. PubMed ID: 31244414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases.
    Kumar KJ; Vani MG; Wang SY; Liao JW; Hsu LS; Yang HL; Hseu YC
    Biofactors; 2013; 39(3):259-70. PubMed ID: 23322673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression.
    Lee CS; Jang WH; Park M; Jung K; Baek HS; Joo YH; Park YH; Lim KM
    Exp Dermatol; 2013 Nov; 22(11):762-4. PubMed ID: 24107097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent development of signaling pathways inhibitors of melanogenesis.
    Pillaiyar T; Manickam M; Jung SH
    Cell Signal; 2017 Dec; 40():99-115. PubMed ID: 28911859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effect of 660-nm LED on melanin synthesis in in vitro and in vivo.
    Oh CT; Kwon TR; Choi EJ; Kim SR; Seok J; Mun SK; Yoo KH; Choi YS; Choi SY; Kim BJ
    Photodermatol Photoimmunol Photomed; 2017 Jan; 33(1):49-57. PubMed ID: 27696509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Sucrier Banana Peel Extracts on Inhibition of Melanogenesis through the ERK Signaling Pathway.
    Phacharapiyangkul N; Thirapanmethee K; Sa-Ngiamsuntorn K; Panich U; Lee CH; Chomnawang MT
    Int J Med Sci; 2019; 16(4):602-606. PubMed ID: 31171912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The melanogenesis and mechanisms of skin-lightening agents--existing and new approaches.
    Gillbro JM; Olsson MJ
    Int J Cosmet Sci; 2011 Jun; 33(3):210-21. PubMed ID: 21265866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of N,N,N-trimethyl phytosphingosine-iodide on melanogenesis via ERK activation-mediated MITF degradation.
    Lee WJ; Bang S; Chung BY; Jung H; Oh ES; Chang SE
    Biosci Biotechnol Biochem; 2016; 80(1):121-7. PubMed ID: 26263195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase.
    Jeong HS; Gu GE; Jo AR; Bang JS; Yun HY; Baek KJ; Kwon NS; Park KC; Kim DS
    Eur J Pharmacol; 2015 Aug; 761():19-27. PubMed ID: 25934572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation.
    Lee CS; Park M; Han J; Lee JH; Bae IH; Choi H; Son ED; Park YH; Lim KM
    J Invest Dermatol; 2013 Apr; 133(4):1063-71. PubMed ID: 23223141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Biochemical and Molecular Analysis of Changes in Melanogenesis Induced by UVA-Activated Fluoroquinolones-In Vitro Study on Human Normal Melanocytes.
    Kowalska J; Banach K; Beberok A; Rok J; Rzepka Z; Wrześniok D
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways.
    Huang HC; Chou YC; Wu CY; Chang TM
    Biochem Biophys Res Commun; 2013 Aug; 438(2):375-81. PubMed ID: 23892040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of melanogenesis by piceid isolated from Polygonum cuspidatum.
    Jeong ET; Jin MH; Kim MS; Chang YH; Park SG
    Arch Pharm Res; 2010 Sep; 33(9):1331-8. PubMed ID: 20945131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation.
    Kolbe L; Mann T; Gerwat W; Batzer J; Ahlheit S; Scherner C; Wenck H; Stäb F
    J Eur Acad Dermatol Venereol; 2013 Jan; 27 Suppl 1():19-23. PubMed ID: 23205541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poria cocos Wolf extracts represses pigmentation in vitro and in vivo.
    Lee H; Cha HJ
    Cell Mol Biol (Noisy-le-grand); 2018 Apr; 64(5):80-84. PubMed ID: 29729698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual hypopigmentary effects of punicalagin via the ERK and Akt pathways.
    Shin JS; Cho JH; Lee H; Jeong HS; Kim MK; Yun HY; Kwon NS; Kim DS
    Biomed Pharmacother; 2017 Aug; 92():122-127. PubMed ID: 28535415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway.
    Zhu PY; Yin WH; Wang MR; Dang YY; Ye XY
    J Dermatol Sci; 2015 Jul; 79(1):74-83. PubMed ID: 25869056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.