These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29972390)

  • 1. Selectivity and polarization in water channel membranes: lessons learned from polymeric membranes and CNTs.
    Freger V
    Faraday Discuss; 2018 Sep; 209(0):371-388. PubMed ID: 29972390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination.
    Chan WF; Chen HY; Surapathi A; Taylor MG; Shao X; Marand E; Johnson JK
    ACS Nano; 2013 Jun; 7(6):5308-19. PubMed ID: 23705642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.
    Shen YX; Si W; Erbakan M; Decker K; De Zorzi R; Saboe PO; Kang YJ; Majd S; Butler PJ; Walz T; Aksimentiev A; Hou JL; Kumar M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):9810-5. PubMed ID: 26216964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
    Sheng J; Zhu Q; Zeng X; Yang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11009-11015. PubMed ID: 28264153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective ion sieving through arrays of sub-nanometer nanopores in chemically tunable 2D carbon membranes.
    van Deursen PMG; Tang Z; Winter A; Mohn MJ; Kaiser U; Turchanin AA; Schneider GF
    Nanoscale; 2019 Nov; 11(43):20785-20791. PubMed ID: 31656965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes.
    Lee HD; Kim HW; Cho YH; Park HB
    Small; 2014 Jul; 10(13):2653-60. PubMed ID: 24668882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water and Ion Transfer to Narrow Carbon Nanotubes: Roles of Exterior and Interior.
    Neklyudov V; Freger V
    J Phys Chem Lett; 2021 Jan; 12(1):185-190. PubMed ID: 33325707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique selectivity trends of highly permeable PAP[5] water channel membranes.
    Song W; Shen YX; Lang C; Saha P; Zenyuk IV; Hickey RJ; Kumar M
    Faraday Discuss; 2018 Sep; 209(0):193-204. PubMed ID: 29999507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy analysis of conductivity and charge selectivity of M2GlyR-derived synthetic channels.
    Chen J; Tomich JM
    Biochim Biophys Acta; 2014 Sep; 1838(9):2319-25. PubMed ID: 24582709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From natural to bioassisted and biomimetic artificial water channel systems.
    Barboiu M; Gilles A
    Acc Chem Res; 2013 Dec; 46(12):2814-23. PubMed ID: 23566356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric exclusion, an éminence grise.
    Freger V
    Adv Colloid Interface Sci; 2023 Sep; 319():102972. PubMed ID: 37556866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination.
    Thomas M; Corry B
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2060):. PubMed ID: 26712639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement in Proton Conductivity and Thermal Stability in Nafion Membranes Induced by Incorporation of Sulfonated Carbon Nanotubes.
    Yin C; Li J; Zhou Y; Zhang H; Fang P; He C
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14026-14035. PubMed ID: 29620850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-Responsive Channels of Zwitterion-Carbon Nanotube Membrane for Rapid Water Permeation and Ultrahigh Mono-/Multivalent Ion Selectivity.
    Liu TY; Yuan HG; Li Q; Tang YH; Zhang Q; Qian W; Van der Bruggen B; Wang X
    ACS Nano; 2015 Jul; 9(7):7488-96. PubMed ID: 26153719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Dynamics in a Peptide-appended Pillar[5]arene Artificial Channel in Lipid and Biomimetic Membranes.
    Barden DR; Vashisth H
    Front Chem; 2021; 9():753635. PubMed ID: 34778209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gated ion transport through dense carbon nanotube membranes.
    Yu M; Funke HH; Falconer JL; Noble RD
    J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water permeation across artificial I-quartet membrane channels: from structure to disorder.
    Murail S; Vasiliu T; Neamtu A; Barboiu M; Sterpone F; Baaden M
    Faraday Discuss; 2018 Sep; 209(0):125-148. PubMed ID: 29974103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion selectivity strategies of sodium channel selectivity filters.
    Dudev T; Lim C
    Acc Chem Res; 2014 Dec; 47(12):3580-7. PubMed ID: 25343535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling water purification by an aquaporin-inspired graphene-based nano-channel.
    Lohrasebi A; Koslowski T
    J Mol Model; 2019 Aug; 25(9):280. PubMed ID: 31463758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.