BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 29972771)

  • 1. Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development.
    Kaaij LJT; van der Weide RH; Ketting RF; de Wit E
    Cell Rep; 2018 Jul; 24(1):1-10.e4. PubMed ID: 29972771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.
    Glinsky GV
    Chromosome Res; 2018 Mar; 26(1-2):61-84. PubMed ID: 29335803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin architecture transitions from zebrafish sperm through early embryogenesis.
    Wike CL; Guo Y; Tan M; Nakamura R; Shaw DK; Díaz N; Whittaker-Tademy AF; Durand NC; Aiden EL; Vaquerizas JM; Grunwald D; Takeda H; Cairns BR
    Genome Res; 2021 Jun; 31(6):981-994. PubMed ID: 34006569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders.
    Gómez-Marín C; Tena JJ; Acemel RD; López-Mayorga M; Naranjo S; de la Calle-Mustienes E; Maeso I; Beccari L; Aneas I; Vielmas E; Bovolenta P; Nobrega MA; Carvajal J; Gómez-Skarmeta JL
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7542-7. PubMed ID: 26034287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demarcation of Topologically Associating Domains Is Uncoupled from Enriched CTCF Binding in Developing Zebrafish.
    Pérez-Rico YA; Barillot E; Shkumatava A
    iScience; 2020 May; 23(5):101046. PubMed ID: 32334414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression.
    Franke M; De la Calle-Mustienes E; Neto A; Almuedo-Castillo M; Irastorza-Azcarate I; Acemel RD; Tena JJ; Santos-Pereira JM; Gómez-Skarmeta JL
    Nat Commun; 2021 Sep; 12(1):5415. PubMed ID: 34518536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key role for CTCF in establishing chromatin structure in human embryos.
    Chen X; Ke Y; Wu K; Zhao H; Sun Y; Gao L; Liu Z; Zhang J; Tao W; Hou Z; Liu H; Liu J; Chen ZJ
    Nature; 2019 Dec; 576(7786):306-310. PubMed ID: 31801998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells.
    Poterlowicz K; Yarker JL; Malashchuk I; Lajoie BR; Mardaryev AN; Gdula MR; Sharov AA; Kohwi-Shigematsu T; Botchkarev VA; Fessing MY
    PLoS Genet; 2017 Sep; 13(9):e1006966. PubMed ID: 28863138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread Enhancer Dememorization and Promoter Priming during Parental-to-Zygotic Transition.
    Zhang B; Wu X; Zhang W; Shen W; Sun Q; Liu K; Zhang Y; Wang Q; Li Y; Meng A; Xie W
    Mol Cell; 2018 Nov; 72(4):673-686.e6. PubMed ID: 30444999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos.
    Chen M; Zhu Q; Li C; Kou X; Zhao Y; Li Y; Xu R; Yang L; Yang L; Gu L; Wang H; Liu X; Jiang C; Gao S
    Nat Commun; 2020 Apr; 11(1):1813. PubMed ID: 32286279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription.
    Hug CB; Grimaldi AG; Kruse K; Vaquerizas JM
    Cell; 2017 Apr; 169(2):216-228.e19. PubMed ID: 28388407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emergence of genome architecture and zygotic genome activation.
    Vallot A; Tachibana K
    Curr Opin Cell Biol; 2020 Jun; 64():50-57. PubMed ID: 32220807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis.
    Bogdanovic O; Fernandez-Miñán A; Tena JJ; de la Calle-Mustienes E; Hidalgo C; van Kruysbergen I; van Heeringen SJ; Veenstra GJ; Gómez-Skarmeta JL
    Genome Res; 2012 Oct; 22(10):2043-53. PubMed ID: 22593555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stratification of TAD boundaries reveals preferential insulation of super-enhancers by strong boundaries.
    Gong Y; Lazaris C; Sakellaropoulos T; Lozano A; Kambadur P; Ntziachristos P; Aifantis I; Tsirigos A
    Nat Commun; 2018 Feb; 9(1):542. PubMed ID: 29416042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics.
    Stapel LC; Vastenhouw NL
    Brief Funct Genomics; 2014 Mar; 13(2):106-20. PubMed ID: 24170706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Elife; 2018 May; 7():. PubMed ID: 29757144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin topology and the timing of enhancer function at the
    Rodríguez-Carballo E; Lopez-Delisle L; Willemin A; Beccari L; Gitto S; Mascrez B; Duboule D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31231-31241. PubMed ID: 33229569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes.
    Pérez-Rico YA; Boeva V; Mallory AC; Bitetti A; Majello S; Barillot E; Shkumatava A
    Genome Res; 2017 Feb; 27(2):259-268. PubMed ID: 27965291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Genome Architecture during SCNT Reveals a Role of Cohesin in Impeding Minor ZGA.
    Zhang K; Wu DY; Zheng H; Wang Y; Sun QR; Liu X; Wang LY; Xiong WJ; Wang Q; Rhodes JDP; Xu K; Li L; Lin Z; Yu G; Xia W; Huang B; Du Z; Yao Y; Nasmyth KA; Klose RJ; Miao YL; Xie W
    Mol Cell; 2020 Jul; 79(2):234-250.e9. PubMed ID: 32579944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.