These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Exogenous H Sun Y; Teng Z; Sun X; Zhang L; Chen J; Wang B; Lu F; Liu N; Yu M; Peng S; Wang Y; Zhao D; Zhao Y; Ren H; Cheng Z; Dong S; Lu F; Zhang W Am J Physiol Endocrinol Metab; 2019 Aug; 317(2):E284-E297. PubMed ID: 31184932 [TBL] [Abstract][Full Text] [Related]
45. Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3. Kim EA; Yang SJ; Choi SY; Lee WJ; Cho SW BMB Rep; 2012 Aug; 45(8):458-63. PubMed ID: 22917030 [TBL] [Abstract][Full Text] [Related]
46. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. Sol EM; Wagner SA; Weinert BT; Kumar A; Kim HS; Deng CX; Choudhary C PLoS One; 2012; 7(12):e50545. PubMed ID: 23236377 [TBL] [Abstract][Full Text] [Related]
47. Sirt3 Impairment and SOD2 Hyperacetylation in Vascular Oxidative Stress and Hypertension. Dikalova AE; Itani HA; Nazarewicz RR; McMaster WG; Flynn CR; Uzhachenko R; Fessel JP; Gamboa JL; Harrison DG; Dikalov SI Circ Res; 2017 Aug; 121(5):564-574. PubMed ID: 28684630 [TBL] [Abstract][Full Text] [Related]
48. Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Osborne B; Reznick J; Wright LE; Sinclair DA; Cooney GJ; Turner N Biochem Biophys Res Commun; 2022 Jun; 607():131-137. PubMed ID: 35367825 [TBL] [Abstract][Full Text] [Related]
49. SIRT3 Is a Critical Regulator of Mitochondrial Function of Fibroblasts in Pulmonary Hypertension. Li M; Plecitá-Hlavatá L; Dobrinskikh E; McKeon BA; Gandjeva A; Riddle S; Laux A; Prasad RR; Kumar S; Tuder RM; Zhang H; Hu CJ; Stenmark KR Am J Respir Cell Mol Biol; 2023 Nov; 69(5):570-583. PubMed ID: 37343939 [TBL] [Abstract][Full Text] [Related]
50. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cheng A; Yang Y; Zhou Y; Maharana C; Lu D; Peng W; Liu Y; Wan R; Marosi K; Misiak M; Bohr VA; Mattson MP Cell Metab; 2016 Jan; 23(1):128-42. PubMed ID: 26698917 [TBL] [Abstract][Full Text] [Related]
51. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. He J; Shangguan X; Zhou W; Cao Y; Zheng Q; Tu J; Hu G; Liang Z; Jiang C; Deng L; Wang S; Yang W; Zuo Y; Ma J; Cai R; Chen Y; Fan Q; Dong B; Xue W; Tan H; Qi Y; Gu J; Su B; Eugene Chin Y; Chen G; Wang Q; Wang T; Cheng J Nat Commun; 2021 Jul; 12(1):4371. PubMed ID: 34272364 [TBL] [Abstract][Full Text] [Related]
52. Sirtuin 3: Emerging therapeutic target for cardiovascular diseases. Cao M; Zhao Q; Sun X; Qian H; Lyu S; Chen R; Xia H; Yuan W Free Radic Biol Med; 2022 Feb; 180():63-74. PubMed ID: 35031448 [TBL] [Abstract][Full Text] [Related]
53. Advances in characterization of SIRT3 deacetylation targets in mitochondrial function. Wang S; Zhang J; Deng X; Zhao Y; Xu K Biochimie; 2020 Dec; 179():1-13. PubMed ID: 32898647 [TBL] [Abstract][Full Text] [Related]
54. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Liu R; Fan M; Candas D; Qin L; Zhang X; Eldridge A; Zou JX; Zhang T; Juma S; Jin C; Li RF; Perks J; Sun LQ; Vaughan AT; Hai CX; Gius DR; Li JJ Mol Cancer Ther; 2015 Sep; 14(9):2090-102. PubMed ID: 26141949 [TBL] [Abstract][Full Text] [Related]
55. Mild endothelial dysfunction in Sirt3 knockout mice fed a high-cholesterol diet: protective role of a novel C/EBP-β-dependent feedback regulation of SOD2. Winnik S; Gaul DS; Siciliani G; Lohmann C; Pasterk L; Calatayud N; Weber J; Eriksson U; Auwerx J; van Tits LJ; Lüscher TF; Matter CM Basic Res Cardiol; 2016 May; 111(3):33. PubMed ID: 27071400 [TBL] [Abstract][Full Text] [Related]
56. Aerobic Interval Training Regulated SIRT3 Attenuates High-Fat-Diet-Associated Cognitive Dysfunction. Shi Z; Li C; Yin Y; Yang Z; Xue H; Mu N; Wang Y; Liu M; Ma H Biomed Res Int; 2018; 2018():2708491. PubMed ID: 29765980 [TBL] [Abstract][Full Text] [Related]
57. A High-Fat/High-Sucrose Diet Induces WNT4 Expression in Mouse Pancreatic β-cells. Kurita Y; Ohki T; Soejima E; Yuan X; Kakino S; Wada N; Hashinaga T; Nakayama H; Tani J; Tajiri Y; Hiromatsu Y; Yamada K; Nomura M Kurume Med J; 2019 May; 65(2):55-62. PubMed ID: 30853690 [TBL] [Abstract][Full Text] [Related]
58. Metabolomic analyses reveal profound differences in glycolytic and tricarboxylic acid cycle metabolism in glucose-responsive and -unresponsive clonal β-cell lines. Spégel P; Malmgren S; Sharoyko VV; Newsholme P; Koeck T; Mulder H Biochem J; 2011 Apr; 435(1):277-84. PubMed ID: 21208194 [TBL] [Abstract][Full Text] [Related]
59. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart. Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709 [TBL] [Abstract][Full Text] [Related]
60. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy. Yue Z; Ma Y; You J; Li Z; Ding Y; He P; Lu X; Jiang J; Chen S; Liu P Exp Cell Res; 2016 Oct; 347(2):261-73. PubMed ID: 27423420 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]