These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29972802)

  • 21. Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import.
    Stewart M; Baker RP; Bayliss R; Clayton L; Grant RP; Littlewood T; Matsuura Y
    FEBS Lett; 2001 Jun; 498(2-3):145-9. PubMed ID: 11412846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics.
    Miao L; Schulten K
    Structure; 2009 Mar; 17(3):449-59. PubMed ID: 19278659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins.
    Chang CW; Lee CP; Su MT; Tsai CH; Chen MR
    J Virol; 2015 Feb; 89(3):1703-18. PubMed ID: 25410863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear mRNA export requires specific FG nucleoporins for translocation through the nuclear pore complex.
    Terry LJ; Wente SR
    J Cell Biol; 2007 Sep; 178(7):1121-32. PubMed ID: 17875746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How to operate a nuclear pore complex by Kap-centric control.
    Lim RY; Huang B; Kapinos LE
    Nucleus; 2015; 6(5):366-72. PubMed ID: 26338152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex.
    Moussavi-Baygi R; Jamali Y; Karimi R; Mofrad MR
    PLoS Comput Biol; 2011 Jun; 7(6):e1002049. PubMed ID: 21673865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.
    Raveh B; Karp JM; Sparks S; Dutta K; Rout MP; Sali A; Cowburn D
    Proc Natl Acad Sci U S A; 2016 May; 113(18):E2489-97. PubMed ID: 27091992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex.
    Peyro M; Soheilypour M; Lee BL; Mofrad MR
    Sci Rep; 2015 Nov; 5():15795. PubMed ID: 26541386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of molecular charge in nucleocytoplasmic transport.
    Goryaynov A; Yang W
    PLoS One; 2014; 9(2):e88792. PubMed ID: 24558427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimal nuclear pore complexes define FG repeat domains essential for transport.
    Strawn LA; Shen T; Shulga N; Goldfarb DS; Wente SR
    Nat Cell Biol; 2004 Mar; 6(3):197-206. PubMed ID: 15039779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multivalent Interactions with Intrinsically Disordered Proteins Probed by Surface Plasmon Resonance.
    Kapinos LE; Lim RYH
    Methods Mol Biol; 2022; 2502():311-328. PubMed ID: 35412248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors.
    Eisele NB; Frey S; Piehler J; Görlich D; Richter RP
    EMBO Rep; 2010 May; 11(5):366-72. PubMed ID: 20379223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions.
    Mincer JS; Simon SM
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):E351-8. PubMed ID: 21690354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy.
    Sakiyama Y; Mazur A; Kapinos LE; Lim RY
    Nat Nanotechnol; 2016 Aug; 11(8):719-23. PubMed ID: 27136131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.
    Onischenko E; Tang JH; Andersen KR; Knockenhauer KE; Vallotton P; Derrer CP; Kralt A; Mugler CF; Chan LY; Schwartz TU; Weis K
    Cell; 2017 Nov; 171(4):904-917.e19. PubMed ID: 29033133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex.
    Ma J; Goryaynov A; Yang W
    Nat Struct Mol Biol; 2016 Mar; 23(3):239-47. PubMed ID: 26878241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between a fluctuating polymer barrier and transport factors together with enzyme action are sufficient for selective and rapid transport through the nuclear pore complex.
    Ro S; Gopinathan A; Kim YW
    Phys Rev E; 2018 Jul; 98(1-1):012403. PubMed ID: 30110828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporally tracking of nano-biofilaments inside the nuclear pore complex core.
    Mohamed MS; Hazawa M; Kobayashi A; Guillaud L; Watanabe-Nakayama T; Nakayama M; Wang H; Kodera N; Oshima M; Ando T; Wong RW
    Biomaterials; 2020 Oct; 256():120198. PubMed ID: 32622019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the Xpo1p nuclear export complex bound to the SxFG/PxFG repeats of the nucleoporin Nup42p.
    Koyama M; Hirano H; Shirai N; Matsuura Y
    Genes Cells; 2017 Oct; 22(10):861-875. PubMed ID: 28791779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Karyopherins regulate nuclear pore complex barrier and transport function.
    Kapinos LE; Huang B; Rencurel C; Lim RYH
    J Cell Biol; 2017 Nov; 216(11):3609-3624. PubMed ID: 28864541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.