These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29972805)

  • 1. Errors in Energy Landscapes Measured with Particle Tracking.
    Bogdan MJ; Savin T
    Biophys J; 2018 Jul; 115(1):139-149. PubMed ID: 29972805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur.
    Wong WP; Halvorsen K
    Opt Express; 2006 Dec; 14(25):12517-31. PubMed ID: 19529687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.
    Raudsepp A; A K Williams M; B Hall S
    Eur Phys J E Soft Matter; 2016 Jul; 39(7):70. PubMed ID: 27439853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and dynamic errors in particle tracking microrheology.
    Savin T; Doyle PS
    Biophys J; 2005 Jan; 88(1):623-38. PubMed ID: 15533928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional parallel particle manipulation and tracking by integrating holographic optical tweezers and engineered point spread functions.
    Conkey DB; Trivedi RP; Pavani SR; Smalyukh II; Piestun R
    Opt Express; 2011 Feb; 19(5):3835-42. PubMed ID: 21369208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward optical-tweezers-based force microscopy for airborne microparticles.
    Power RM; Burnham DR; Reid JP
    Appl Opt; 2014 Dec; 53(36):8522-34. PubMed ID: 25608202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swarms with canonical active Brownian motion.
    Glück A; Hüffel H; Ilijić S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051105. PubMed ID: 21728488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended Kramers-Moyal analysis applied to optical trapping.
    Honisch C; Friedrich R; Hörner F; Denz C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026702. PubMed ID: 23005877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
    Bowman R; Gibson G; Padgett M
    Opt Express; 2010 May; 18(11):11785-90. PubMed ID: 20589039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superresolution imaging in optical tweezers using high-speed cameras.
    Staforelli JP; Vera E; Brito JM; Solano P; Torres S; Saavedra C
    Opt Express; 2010 Feb; 18(4):3322-31. PubMed ID: 20389339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise.
    Jannasch A; Mahamdeh M; Schäffer E
    Phys Rev Lett; 2011 Nov; 107(22):228301. PubMed ID: 22182046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal locus tracking with proper accounting of static and dynamic errors.
    Backlund MP; Joyner R; Moerner WE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062716. PubMed ID: 26172745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle dynamics in two-dimensional random-energy landscapes: experiments and simulations.
    Evers F; Zunke C; Hanes RD; Bewerunge J; Ladadwa I; Heuer A; Egelhaaf SU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022125. PubMed ID: 24032793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution detection of Brownian motion for quantitative optical tweezers experiments.
    Grimm M; Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021912. PubMed ID: 23005790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion of a colloidal particle in an optical trap.
    Lukić B; Jeney S; Sviben Z; Kulik AJ; Florin EL; Forró L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011112. PubMed ID: 17677415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants.
    Wei MT; Chiou A
    Opt Express; 2005 Jul; 13(15):5798-806. PubMed ID: 19498584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal tracking of a Brownian particle.
    Fields AP; Cohen AE
    Opt Express; 2012 Sep; 20(20):22585-601. PubMed ID: 23037408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial Optical Traps: A New Direction for Optical Tweezers.
    Yehoshua S; Pollari R; Milstein JN
    Biophys J; 2015 Jun; 108(12):2759-66. PubMed ID: 26083913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.