BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

879 related articles for article (PubMed ID: 29973041)

  • 1. Hierarchical Carbon Nanotube-Coated Carbon Fiber: Ultra Lightweight, Thin, and Highly Efficient Microwave Absorber.
    Singh SK; Akhtar MJ; Kar KK
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24816-24828. PubMed ID: 29973041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical engineering of Large-caliber carbon Nanotube/Mesoporous Carbon/Fe
    Ban Q; Li Y; Qin Y; Zheng Y; Xie X; Yu Z; Kong J
    J Colloid Interface Sci; 2022 Jun; 616():618-630. PubMed ID: 35240440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption.
    Yang N; Luo ZX; Zhu GR; Chen SC; Wang XL; Wu G; Wang YZ
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35987-35998. PubMed ID: 31496213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Polarization from Hollow Cube-like ZnSnO
    Wang L; Li X; Li Q; Zhao Y; Che R
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22602-22610. PubMed ID: 29893114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband and Lightweight Microwave Absorber Constructed by in Situ Growth of Hierarchical CoFe
    Liu Y; Chen Z; Zhang Y; Feng R; Chen X; Xiong C; Dong L
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13860-13868. PubMed ID: 29589899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses.
    Wu N; Lv H; Liu J; Liu Y; Wang S; Liu W
    Phys Chem Chem Phys; 2016 Nov; 18(46):31542-31550. PubMed ID: 27831579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption.
    Wang Y; Di X; Lu Z; Wu X
    J Colloid Interface Sci; 2021 May; 589():462-471. PubMed ID: 33486281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Framework-Derived Carbon/Carbon Nanotubes Mediate Impedance Matching for Strong Microwave Absorption at Fairly Low Temperatures.
    Fang JW; Ma Y; Zhang ZY; Yang BZ; Li YS; Hu YY; Yin YH; Liu XB; Wu ZP
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33496-33504. PubMed ID: 34228430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile fabrication of Hildewintera-colademonis-like hexagonal boron nitride/carbon nanotube composite having light weight and enhanced microwave absorption.
    Wang M; Wang H; An L; Zhang B; Huang X; Wen G; Zhong B; Yu Y
    J Colloid Interface Sci; 2020 Mar; 564():454-466. PubMed ID: 31926454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface Modulating CNTs@PANi Hybrids by Controlled Unzipping of the Walls of CNTs To Achieve Tunable High-Performance Microwave Absorption.
    Wang H; Meng F; Huang F; Jing C; Li Y; Wei W; Zhou Z
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):12142-12153. PubMed ID: 30834737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of MOF-derived hierarchical Co@C@RGO composite with controllable heterogeneous interfaces as a high-efficiency microwave absorbent.
    Wang Y; Di X; Gao X; Wu X
    Nanotechnology; 2020 Sep; 31(39):395710. PubMed ID: 32470960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electromagnetic Microwave Absorption Property of Peapod-like MnO@carbon Nanowires.
    Duan Y; Xiao Z; Yan X; Gao Z; Tang Y; Hou L; Li Q; Ning G; Li Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40078-40087. PubMed ID: 30379515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ growth of core-shell ZnFe
    Chai L; Wang Y; Zhou N; Du Y; Zeng X; Zhou S; He Q; Wu G
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):475-484. PubMed ID: 32805668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long Carbon Fibers for Microwave Absorption: Effect of Fiber Length on Absorption Frequency Band.
    Breiss H; El Assal A; Benzerga R; Méjean C; Sharaiha A
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of MnO-skeleton cross-linked by carbon nanotubes networks for efficient microwave absorption.
    Duan Y; Jiang B; Ma C; Wang X; Wang Y; Li R; Yang W; Li Y
    J Colloid Interface Sci; 2021 Nov; 602():778-788. PubMed ID: 34214732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Cobalt Selenides as Highly Efficient Microwave Absorbers with Tunable Frequency Response.
    Zeng M; Cao Q; Liu J; Guo B; Hao X; Liu Q; Liu X; Sun X; Zhang X; Yu R
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1222-1231. PubMed ID: 31805765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.
    Qiu X; Wang L; Zhu H; Guan Y; Zhang Q
    Nanoscale; 2017 Jun; 9(22):7408-7418. PubMed ID: 28540377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material.
    Long A; Zhao P; Liao L; Wang R; Tao J; Liao J; Liao X; Zhao Y
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of ZnCl
    Wang L; Zhou P; Guo Y; Zhang J; Qiu X; Guan Y; Yu M; Zhu H; Zhang Q
    RSC Adv; 2019 Mar; 9(17):9718-9728. PubMed ID: 35520714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.