These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 29973146)

  • 1. Meta-analysis of binary outcomes via generalized linear mixed models: a simulation study.
    Bakbergenuly I; Kulinskaya E
    BMC Med Res Methodol; 2018 Jul; 18(1):70. PubMed ID: 29973146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laplace approximation, penalized quasi-likelihood, and adaptive Gauss-Hermite quadrature for generalized linear mixed models: towards meta-analysis of binary outcome with sparse data.
    Ju K; Lin L; Chu H; Cheng LL; Xu C
    BMC Med Res Methodol; 2020 Jun; 20(1):152. PubMed ID: 32539721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data.
    Stijnen T; Hamza TH; Ozdemir P
    Stat Med; 2010 Dec; 29(29):3046-67. PubMed ID: 20827667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random-effects meta-analysis models for the odds ratio in the case of rare events under different data-generating models: A simulation study.
    Jansen K; Holling H
    Biom J; 2023 Mar; 65(3):e2200132. PubMed ID: 36216590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies.
    Seide SE; Röver C; Friede T
    BMC Med Res Methodol; 2019 Jan; 19(1):16. PubMed ID: 30634920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of analytic approaches for individual patient data meta-analyses with binary outcomes.
    Thomas D; Platt R; Benedetti A
    BMC Med Res Methodol; 2017 Feb; 17(1):28. PubMed ID: 28202011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach.
    Chen Y; Hong C; Ning Y; Su X
    Stat Med; 2016 Jan; 35(1):21-40. PubMed ID: 26303591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-stage individual participant data meta-analysis models for continuous and binary outcomes: Comparison of treatment coding options and estimation methods.
    Riley RD; Legha A; Jackson D; Morris TP; Ensor J; Snell KIE; White IR; Burke DL
    Stat Med; 2020 Aug; 39(19):2536-2555. PubMed ID: 32394498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitfalls of using the risk ratio in meta-analysis.
    Bakbergenuly I; Hoaglin DC; Kulinskaya E
    Res Synth Methods; 2019 Sep; 10(3):398-419. PubMed ID: 30854785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for estimating between-study variance and overall effect in meta-analysis of odds ratios.
    Bakbergenuly I; Hoaglin DC; Kulinskaya E
    Res Synth Methods; 2020 May; 11(3):426-442. PubMed ID: 32112619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models.
    Litière S; Alonso A; Molenberghs G
    Stat Med; 2008 Jul; 27(16):3125-44. PubMed ID: 18069726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses.
    Langan D; Higgins JPT; Jackson D; Bowden J; Veroniki AA; Kontopantelis E; Viechtbauer W; Simmonds M
    Res Synth Methods; 2019 Mar; 10(1):83-98. PubMed ID: 30067315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assessment of estimation methods for generalized linear mixed models with binary outcomes.
    Capanu M; Gönen M; Begg CB
    Stat Med; 2013 Nov; 32(26):4550-66. PubMed ID: 23839712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation and application of generalized linear mixed model derivatives using lme4.
    Wang T; Graves B; Rosseel Y; Merkle EC
    Psychometrika; 2022 Sep; 87(3):1173-1193. PubMed ID: 35118605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permutation-based variance component test in generalized linear mixed model with application to multilocus genetic association study.
    Zeng P; Zhao Y; Li H; Wang T; Chen F
    BMC Med Res Methodol; 2015 Apr; 15():37. PubMed ID: 25897803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling spatial disease rates using maximum likelihood.
    Leroux BG
    Stat Med; 2000 Sep 15-30; 19(17-18):2321-32. PubMed ID: 10960856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnosis of random-effect model misspecification in generalized linear mixed models for binary response.
    Huang X
    Biometrics; 2009 Jun; 65(2):361-8. PubMed ID: 18759837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation Methods for Mixed Logistic Models with Few Clusters.
    McNeish D
    Multivariate Behav Res; 2016; 51(6):790-804. PubMed ID: 27802068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized quasi-linear mixed-effects model.
    Saigusa Y; Eguchi S; Komori O
    Stat Methods Med Res; 2022 Jul; 31(7):1280-1291. PubMed ID: 35286226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical inference in generalized linear mixed models: a review.
    Tuerlinckx F; Rijmen F; Verbeke G; De Boeck P
    Br J Math Stat Psychol; 2006 Nov; 59(Pt 2):225-55. PubMed ID: 17067411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.