These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29973606)

  • 1. Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation.
    Anggraini D; Glasauer S; Wunderlich K
    Sci Rep; 2018 Jul; 8(1):10110. PubMed ID: 29973606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain.
    Viganò S; Piazza M
    J Neurosci; 2020 Mar; 40(13):2727-2736. PubMed ID: 32060171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural correlates of memory integration in value-based decision-making during human spatial navigation.
    He Q; Liu JL; Eschapasse L; Zagora AK; Brown TI
    Neuropsychologia; 2024 Jan; 193():108758. PubMed ID: 38103679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-related connectivity of decision points during spatial navigation in a schematic map.
    Qi Q; Weng Y; Zheng S; Wang S; Liu S; Huang Q; Huang R
    Brain Struct Funct; 2022 Jun; 227(5):1697-1710. PubMed ID: 35194657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The well-worn route revisited: Striatal and hippocampal system contributions to familiar route navigation.
    Buckley M; McGregor A; Ihssen N; Austen J; Thurlbeck S; Smith SP; Heinecke A; Lew AR
    Hippocampus; 2024 Jul; 34(7):310-326. PubMed ID: 38721743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.
    Chersi F; Burgess N
    Neuron; 2015 Oct; 88(1):64-77. PubMed ID: 26447573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Representations in Hippocampal and Prefrontal Hierarchies.
    Brunec IK; Momennejad I
    J Neurosci; 2022 Jan; 42(2):299-312. PubMed ID: 34799416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prefrontal-hippocampal interactions for spatial navigation.
    Ito HT
    Neurosci Res; 2018 Apr; 129():2-7. PubMed ID: 28476463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of reinforcement learning models of human spatial navigation.
    He Q; Liu JL; Eschapasse L; Beveridge EH; Brown TI
    Sci Rep; 2022 Aug; 12(1):13923. PubMed ID: 35978035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of forward planning in a spatial decision task in humans.
    Simon DA; Daw ND
    J Neurosci; 2011 Apr; 31(14):5526-39. PubMed ID: 21471389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress Disrupts Human Hippocampal-Prefrontal Function during Prospective Spatial Navigation and Hinders Flexible Behavior.
    Brown TI; Gagnon SA; Wagner AD
    Curr Biol; 2020 May; 30(10):1821-1833.e8. PubMed ID: 32243859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual Differences in Human Path Integration Abilities Correlate with Gray Matter Volume in Retrosplenial Cortex, Hippocampus, and Medial Prefrontal Cortex.
    Chrastil ER; Sherrill KR; Aselcioglu I; Hasselmo ME; Stern CE
    eNeuro; 2017; 4(2):. PubMed ID: 28451633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Versatile Wayfinder: Prefrontal Contributions to Spatial Navigation.
    Patai EZ; Spiers HJ
    Trends Cogn Sci; 2021 Jun; 25(6):520-533. PubMed ID: 33752958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study.
    Hao X; Huang Y; Li X; Song Y; Kong X; Wang X; Yang Z; Zhen Z; Liu J
    Brain Behav; 2016 Dec; 6(12):e00572. PubMed ID: 28031996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective representation of navigational goals in the human hippocampus.
    Brown TI; Carr VA; LaRocque KF; Favila SE; Gordon AM; Bowles B; Bailenson JN; Wagner AD
    Science; 2016 Jun; 352(6291):1323-6. PubMed ID: 27284194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Medial Prefrontal Cortex Represents the Object-Based Cognitive Map When Remembering an Egocentric Target Location.
    Zhang B; Naya Y
    Cereb Cortex; 2020 Sep; 30(10):5356-5371. PubMed ID: 32483594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigating toward a novel environment from a route or survey perspective: neural correlates and context-dependent connectivity.
    Boccia M; Guariglia C; Sabatini U; Nemmi F
    Brain Struct Funct; 2016 May; 221(4):2005-21. PubMed ID: 25739692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural computations underlying inverse reinforcement learning in the human brain.
    Collette S; Pauli WM; Bossaerts P; O'Doherty J
    Elife; 2017 Oct; 6():. PubMed ID: 29083301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.