These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 2997365)

  • 41. Na+ for H+ exchange in rabbit erythrocytes.
    Escobales N; Rivera A
    J Cell Physiol; 1987 Jul; 132(1):73-80. PubMed ID: 3036894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH; Meier PJ; Aronson PS; Boyer JL
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SITS-inhibitable Cl- transport and Na+-dependent H+ production in primary astroglial cultures.
    Kimelberg HK; Biddlecome S; Bourke RS
    Brain Res; 1979 Sep; 173(1):111-24. PubMed ID: 39659
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytosolic pH regulation in osteoblasts. Regulation of anion exchange by intracellular pH and Ca2+ ions.
    Green J; Yamaguchi DT; Kleeman CR; Muallem S
    J Gen Physiol; 1990 Jan; 95(1):121-45. PubMed ID: 2299328
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of osmotic stresses on isolated rat hepatocytes. II. Modulation of intracellular pH.
    Gleeson D; Corasanti JG; Boyer JL
    Am J Physiol; 1990 Feb; 258(2 Pt 1):G299-307. PubMed ID: 2305896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of pHi on Na(+)-H+, Na(+)-dependent, and Na(+)-independent C1(-)-HCO3-exchangers in vascular smooth muscle.
    Kahn AM; Cragoe EJ; Allen JC; Seidel CL; Shelat H
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C837-44. PubMed ID: 1659211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of rabbit medullary collecting duct cell pH by basolateral Na+/H+ and Cl-/base exchange.
    Breyer MD; Jacobson HR
    J Clin Invest; 1989 Sep; 84(3):996-1004. PubMed ID: 2547843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypertonicity stimulates Cl(-) transport in the intestine of fresh water acclimated eel, Anguilla anguilla.
    Lionetto MG; Giordona ME; Nicolardi G; Schettino T
    Cell Physiol Biochem; 2001; 11(1):41-54. PubMed ID: 11275682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactions of lithium and protons with the sodium-proton exchanger of dog red blood cells.
    Parker JC
    J Gen Physiol; 1986 Feb; 87(2):189-200. PubMed ID: 3005472
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Na-H and Cl-HCO3 exchange in rabbit oxyntic cells using fluorescence microscopy.
    Paradiso AM; Tsien RY; Demarest JR; Machen TE
    Am J Physiol; 1987 Jul; 253(1 Pt 1):C30-6. PubMed ID: 3037913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 4-Acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid inhibits adrenocorticotropin secretion from anterior pituitary cells.
    Heisler S; Jeandel L
    Endocrinology; 1989 Sep; 125(3):1231-8. PubMed ID: 2474434
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Na(+)-K(+)-2Cl- cotransport, Na+/H+ exchange, and cell volume in ferret erythrocytes.
    Mairbäurl H; Herth C
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1603-11. PubMed ID: 8944644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sodium/proton exchange in cultured bovine adrenal medullary cells.
    Yanagihara N; Yokota K; Kobayashi H; Wada A; Uezono Y; Izumi F
    J Neurochem; 1990 May; 54(5):1626-31. PubMed ID: 2157814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Volume regulation by Necturus gallbladder: apical Na+-H+ and Cl(-)-HCO-3 exchange.
    Ericson AC; Spring KR
    Am J Physiol; 1982 Sep; 243(3):C146-50. PubMed ID: 6287860
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics and stoichiometry of the human red cell Na+/H+ exchanger.
    Semplicini A; Spalvins A; Canessa M
    J Membr Biol; 1989 Mar; 107(3):219-28. PubMed ID: 2541250
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of Na+/H+ and K+/H+ exchange by calyculin A in Amphiuma tridactylum red blood cells: implications for the control of volume-induced ion flux activity.
    Ortiz-Acevedo A; Rigor RR; Maldonado HM; Cala PM
    Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1316-25. PubMed ID: 18799654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Separate control of regulatory volume increase and Na+-H+ exchange by cultured renal cells.
    Montrose MH; Knoblauch C; Murer H
    Am J Physiol; 1988 Jul; 255(1 Pt 1):C76-85. PubMed ID: 2839037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of HCO3- in regulation of cytoplasmic pH in ciliary epithelial cells.
    Helbig H; Korbmacher C; Stumpff F; Coca-Prados M; Wiederholt M
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C696-705. PubMed ID: 2801920
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system.
    Deitmer JW
    J Gen Physiol; 1991 Sep; 98(3):637-55. PubMed ID: 1761972
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HCO3- transport in the toad lens epithelium is mediated by an electronegative Na(+)-dependent symport.
    Wolosin JM; Alvarez LJ; Candia OA
    Am J Physiol; 1990 May; 258(5 Pt 1):C855-61. PubMed ID: 2159230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.