BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29973916)

  • 1. An Engineered Distant Homolog of
    Piechocki M; Giska F; Koczyk G; Grynberg M; Krzymowska M
    Front Microbiol; 2018; 9():1060. PubMed ID: 29973916
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae, creates a binding site for host 14-3-3 proteins.
    Giska F; Lichocka M; Piechocki M; Dadlez M; Schmelzer E; Hennig J; Krzymowska M
    Plant Physiol; 2013 Apr; 161(4):2049-61. PubMed ID: 23396834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two Strategies of
    Zembek P; Danilecka A; Hoser R; Eschen-Lippold L; Benicka M; Grech-Baran M; Rymaszewski W; Barymow-Filoniuk I; Morgiewicz K; Kwiatkowski J; Piechocki M; Poznanski J; Lee J; Hennig J; Krzymowska M
    Front Plant Sci; 2018; 9():978. PubMed ID: 30042777
    [No Abstract]   [Full Text] [Related]  

  • 4. Contributions of the effector gene hopQ1-1 to differences in host range between Pseudomonas syringae pv. phaseolicola and P. syringae pv. tabaci.
    Ferrante P; Clarke CR; Cavanaugh KA; Michelmore RW; Buonaurio R; Vinatzer BA
    Mol Plant Pathol; 2009 Nov; 10(6):837-42. PubMed ID: 19849789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting virulence function from recognition: cell death suppression in Nicotiana benthamiana by XopQ/HopQ1-family effectors relies on EDS1-dependent immunity.
    Adlung N; Bonas U
    Plant J; 2017 Aug; 91(3):430-442. PubMed ID: 28423458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HopQ1 effector's nucleoside hydrolase-like domain is required for bacterial virulence in arabidopsis and tomato, but not host recognition in tobacco.
    Li W; Chiang YH; Coaker G
    PLoS One; 2013; 8(3):e59684. PubMed ID: 23555744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel Pseudomonas syringae Psy61 effector with virulence and avirulence functions by a HrpL-dependent promoter-trap assay.
    Losada L; Sussan T; Pak K; Zeyad S; Rozenbaum I; Hutcheson SW
    Mol Plant Microbe Interact; 2004 Mar; 17(3):254-62. PubMed ID: 15000392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A.
    Vencato M; Tian F; Alfano JR; Buell CR; Cartinhour S; DeClerck GA; Guttman DS; Stavrinides J; Joardar V; Lindeberg M; Bronstein PA; Mansfield JW; Myers CR; Collmer A; Schneider DJ
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1193-206. PubMed ID: 17073302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes.
    Charity JC; Pak K; Delwiche CF; Hutcheson SW
    Mol Plant Microbe Interact; 2003 Jun; 16(6):495-507. PubMed ID: 12795376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas syringae pv. phaseolicola effector HopF1 inhibits pathogen-associated molecular pattern-triggered immunity in a RIN4-independent manner in common bean (Phaseolus vulgaris).
    Hou S; Mu R; Ma G; Xu X; Zhang C; Yang Y; Wu D
    FEMS Microbiol Lett; 2011 Oct; 323(1):35-43. PubMed ID: 22092678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal imaging of Pseudomonas syringae pv. phaseolicola colony development in bean reveals reduced multiplication of strains containing the genomic island PPHGI-1.
    Godfrey SA; Mansfield JW; Corry DS; Lovell HC; Jackson RW; Arnold DL
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1294-302. PubMed ID: 20672876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas syringae pv. phaseolicola isolated from weeds in bean crop fields.
    Fernández-Sanz AM; Rodicio MR; González AJ
    Lett Appl Microbiol; 2016 Apr; 62(4):344-8. PubMed ID: 26880144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Erwinia chrysanthemi EC16 hrp/hrc gene cluster encodes an active Hrp type III secretion system that is flanked by virulence genes functionally unrelated to the Hrp system.
    Rojas CM; Ham JH; Schechter LM; Kim JF; Beer SV; Collmer A
    Mol Plant Microbe Interact; 2004 Jun; 17(6):644-53. PubMed ID: 15195947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains.
    Lindeberg M; Cartinhour S; Myers CR; Schechter LM; Schneider DJ; Collmer A
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1151-8. PubMed ID: 17073298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens
    Thomas NC; Hendrich CG; Gill US; Allen C; Hutton SF; Schultink A
    Front Plant Sci; 2020; 11():463. PubMed ID: 32391034
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY, a new hrp gene identified in the halo-blight bacterium.
    Mansfield J; Jenner C; Hockenhull R; Bennett MA; Stewart R
    Mol Plant Microbe Interact; 1994; 7(6):726-39. PubMed ID: 7873779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1.
    Schultink A; Qi T; Lee A; Steinbrenner AD; Staskawicz B
    Plant J; 2017 Dec; 92(5):787-795. PubMed ID: 28891100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants.
    Hauck P; Thilmony R; He SY
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8577-82. PubMed ID: 12817082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees.
    Almeida RND; Greenberg M; Bundalovic-Torma C; Martel A; Wang PW; Middleton MA; Chatterton S; Desveaux D; Guttman DS
    PLoS Pathog; 2022 Jul; 18(7):e1010716. PubMed ID: 35877772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Immobilization and Toxicity Induced by a Bean Plant Immune System.
    Cooper B; Beard HS; Yang R; Garrett WM; Campbell KB
    J Proteome Res; 2021 Jul; 20(7):3664-3677. PubMed ID: 34097416
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.