BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29974070)

  • 1. Surface Pore Engineering of Covalent Organic Frameworks for Ammonia Capture through Synergistic Multivariate and Open Metal Site Approaches.
    Yang Y; Faheem M; Wang L; Meng Q; Sha H; Yang N; Yuan Y; Zhu G
    ACS Cent Sci; 2018 Jun; 4(6):748-754. PubMed ID: 29974070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application and Challenge of Metal/Covalent Organic Frameworks in Ammonia Sorption and Separation.
    Fu Y; Zhang W; Ma H
    Chempluschem; 2024 Jun; ():e202400236. PubMed ID: 38895820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations.
    Barin G; Peterson GW; Crocellà V; Xu J; Colwell KA; Nandy A; Reimer JA; Bordiga S; Long JR
    Chem Sci; 2017 Jun; 8(6):4399-4409. PubMed ID: 30155218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Ammonia Uptake of a Metal-Organic Framework Adsorbent in a Wide Pressure Range.
    Kim DW; Kang DW; Kang M; Lee JH; Choe JH; Chae YS; Choi DS; Yun H; Hong CS
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22531-22536. PubMed ID: 32969148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Screening of Metal-Organic Frameworks for Ammonia Capture from H
    Zhu Z; Wang H; Wu XY; Luo K; Fan J
    ACS Omega; 2022 Oct; 7(42):37640-37653. PubMed ID: 36312414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Ammonia Adsorption within Metal-Organic Frameworks with Different Unsaturated Metal Sites.
    Zhang D; Shen Y; Ding J; Zhou H; Zhang Y; Feng Q; Zhang X; Chen K; Wang J; Chen Q; Zhang Y; Li C
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exceptional ammonia uptake by a covalent organic framework.
    Doonan CJ; Tranchemontagne DJ; Glover TG; Hunt JR; Yaghi OM
    Nat Chem; 2010 Mar; 2(3):235-8. PubMed ID: 21124483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insertion of CO
    Kang C; Zhang Z; Xi S; Li H; Usadi AK; Calabro DC; Baugh LS; Wang Y; Zhao D
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2217081120. PubMed ID: 36812199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A record ammonia adsorption by calcium chloride confined in covalent organic frameworks.
    Tian X; Qiu J; Wang Z; Chen Y; Li Z; Wang H; Zhao Y; Wang J
    Chem Commun (Camb); 2022 Jan; 58(8):1151-1154. PubMed ID: 34981086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions.
    Lu Q; Ma Y; Li H; Guan X; Yusran Y; Xue M; Fang Q; Yan Y; Qiu S; Valtchev V
    Angew Chem Int Ed Engl; 2018 May; 57(21):6042-6048. PubMed ID: 29457858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations.
    Bloch ED; Hudson MR; Mason JA; Chavan S; Crocellà V; Howe JD; Lee K; Dzubak AL; Queen WL; Zadrozny JM; Geier SJ; Lin LC; Gagliardi L; Smit B; Neaton JB; Bordiga S; Brown CM; Long JR
    J Am Chem Soc; 2014 Jul; 136(30):10752-61. PubMed ID: 24999916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal ion-assisted carboxyl-containing covalent organic frameworks for the efficient removal of Congo red.
    Yue JY; Wang L; Ma Y; Yang P; Zhang YQ; Jiang Y; Tang B
    Dalton Trans; 2019 Dec; 48(48):17763-17769. PubMed ID: 31773120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient capture and storage of ammonia in robust aluminium-based metal-organic frameworks.
    Guo L; Hurd J; He M; Lu W; Li J; Crawshaw D; Fan M; Sapchenko S; Chen Y; Zeng X; Kippax-Jones M; Huang W; Zhu Z; Manuel P; Frogley MD; Lee D; Schröder M; Yang S
    Commun Chem; 2023 Mar; 6(1):55. PubMed ID: 36964287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption.
    Rieth AJ; Dincă M
    J Am Chem Soc; 2018 Mar; 140(9):3461-3466. PubMed ID: 29425040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-Organic Frameworks with Internal Urea-Functionalized Dicarboxylate Linkers for SO
    Glomb S; Woschko D; Makhloufi G; Janiak C
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37419-37434. PubMed ID: 28976188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture.
    Chang J; Li H; Zhao J; Guan X; Li C; Yu G; Valtchev V; Yan Y; Qiu S; Fang Q
    Chem Sci; 2021 May; 12(24):8452-8457. PubMed ID: 34221327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage.
    Lee YJ; Talapaneni SN; Coskun A
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30679-30685. PubMed ID: 28782930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia Capture in Rhodium(II)-Based Metal-Organic Polyhedra via Synergistic Coordinative and H-Bonding Interactions.
    Carné-Sánchez A; Martínez-Esaín J; Rookard T; Flood CJ; Faraudo J; Stylianou KC; Maspoch D
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6747-6754. PubMed ID: 36695491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized Covalent Triazine Frameworks for Effective CO
    Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.