These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 29974090)
1. A magnetic resonance and electrochemical study of the role of polymer mobility in supporting hydrogen transport in perfluorosulfonic acid membranes. Yan ZB; Young AP; Goward GR Phys Chem Chem Phys; 2018 Jul; 20(28):19098-19109. PubMed ID: 29974090 [TBL] [Abstract][Full Text] [Related]
2. Superior Proton Exchange Membrane Fuel Cell (PEMFC) Performance Using Short-Side-Chain Perfluorosulfonic Acid (PFSA) Membrane and Ionomer. Zhao N; Shi Z; Girard F Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009232 [TBL] [Abstract][Full Text] [Related]
3. Modelling of morphology and proton transport in PFSA membranes. Elliott JA; Paddison SJ Phys Chem Chem Phys; 2007 Jun; 9(21):2602-18. PubMed ID: 17627306 [TBL] [Abstract][Full Text] [Related]
4. Polyaniline and Perfluorosulfonic Acid Co-Stabilized Metal Catalysts for Oxygen Reduction Reaction. Ye B; Cheng K; Li W; Liu J; Zhang J; Mu S Langmuir; 2017 Jun; 33(22):5353-5361. PubMed ID: 28494153 [TBL] [Abstract][Full Text] [Related]
5. Approaches to the Modification of Perfluorosulfonic Acid Membranes. Safronova EY; Lysova AA; Voropaeva DY; Yaroslavtsev AB Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623782 [TBL] [Abstract][Full Text] [Related]
6. All-Perfluorosulfonated-Ionomer Composite Membranes Containing Blow-Spun Fibers: Effect of a Thin Fiber Framework on Proton Conductivity and Mechanical Properties. Onuki S; Kawai Y; Masunaga H; Ohta N; Kikuchi R; Ashizawa M; Nabae Y; Matsumoto H ACS Appl Mater Interfaces; 2024 Feb; 16(8):10682-10691. PubMed ID: 38381136 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulation study on the effect of perfluorosulfonic acid side chains on oxygen permeation in hydrated ionomers of PEMFCs. Kwon SH; Kang H; Sohn YJ; Lee J; Shim S; Lee SG Sci Rep; 2021 Apr; 11(1):8702. PubMed ID: 33888751 [TBL] [Abstract][Full Text] [Related]
8. Recovery, Regeneration, and Reapplication of PFSA Polymer from End-of-Life PEMFC MEAs. Sharma R; Morgen P; Larsen MJ; Roda-Serrat MC; Lund PB; Grahl-Madsen L; Andersen SM ACS Appl Mater Interfaces; 2023 Oct; 15(41):48705-48715. PubMed ID: 37787495 [TBL] [Abstract][Full Text] [Related]
9. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. Javed A; Palafox Gonzalez P; Thangadurai V ACS Appl Mater Interfaces; 2023 Jun; 15(25):29674-29699. PubMed ID: 37326582 [TBL] [Abstract][Full Text] [Related]
10. Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes. Sambandam S; Ramani V Phys Chem Chem Phys; 2010 Jun; 12(23):6140-9. PubMed ID: 20383348 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Siracusano S; Trocino S; Briguglio N; Baglio V; Aricò AS Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30087229 [TBL] [Abstract][Full Text] [Related]
12. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network. Luo X; Holdcroft S; Mani A; Zhang Y; Shi Z Phys Chem Chem Phys; 2011 Oct; 13(40):18055-62. PubMed ID: 21915410 [TBL] [Abstract][Full Text] [Related]
13. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Zeis R Beilstein J Nanotechnol; 2015; 6():68-83. PubMed ID: 25671153 [TBL] [Abstract][Full Text] [Related]
14. Promising aquivion composite membranes based on fluoroalkyl zirconium phosphate for fuel cell applications. Donnadio A; Pica M; Subianto S; Jones DJ; Cojocaru P; Casciola M ChemSusChem; 2014 Aug; 7(8):2176-84. PubMed ID: 24975037 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. scui@utk.edu. Cui S; Liu J; Selvan ME; Paddison SJ; Keffer DJ; Edwards BJ J Phys Chem B; 2008 Oct; 112(42):13273-84. PubMed ID: 18826266 [TBL] [Abstract][Full Text] [Related]
16. Performance Comparison of Proton Exchange Membrane Fuel Cells with Nafion and Aquivion Perfluorosulfonic Acids with Different Equivalent Weights as the Electrode Binders. Li T; Shen J; Chen G; Guo S; Xie G ACS Omega; 2020 Jul; 5(28):17628-17636. PubMed ID: 32715248 [TBL] [Abstract][Full Text] [Related]
17. Ultrathin Electrolyte Membranes with PFSA-Vinylon Intermediate Layers for PEM Fuel Cells. Kim J; Yamasaki K; Ishimoto H; Takata Y Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32756335 [TBL] [Abstract][Full Text] [Related]
18. High-temperature low-humidity proton exchange membrane with "stream-reservoir" ionic channels for high-power-density fuel cells. Guan P; Zou Y; Zhang M; Zhong W; Xu J; Lei J; Ding H; Feng W; Liu F; Zhang Y Sci Adv; 2023 Apr; 9(17):eadh1386. PubMed ID: 37126562 [TBL] [Abstract][Full Text] [Related]
19. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties. Albert A; Barnett AO; Thomassen MS; Schmidt TJ; Gubler L ACS Appl Mater Interfaces; 2015 Oct; 7(40):22203-12. PubMed ID: 26393461 [TBL] [Abstract][Full Text] [Related]
20. Asymmetric bi-layer PFSA membranes as model systems for the study of water management in the PEMFC. Peng Z; Morin A; Huguet P; Lanteri Y; Deabate S Phys Chem Chem Phys; 2014 Oct; 16(38):20941-56. PubMed ID: 25171457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]