These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29974101)

  • 21. Effect of co-sensitization of InSb quantum dots on enhancing the photoconversion efficiency of CdS based quantum dot sensitized solar cells.
    Archana T; Vijayakumar K; Subashini G; Nirmala Grace A; Arivanandhan M; Jayavel R
    RSC Adv; 2020 Apr; 10(25):14837-14845. PubMed ID: 35497140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime.
    Gopi CV; Venkata-Haritha M; Seo H; Singh S; Kim SK; Shiratani M; Kim HJ
    Dalton Trans; 2016 May; 45(20):8447-57. PubMed ID: 27111597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aqueous synthesis of Mn-doped CuInSe
    Abate MA; Dehvari K; Chang JY; Waki K
    Dalton Trans; 2019 Nov; 48(42):16115-16122. PubMed ID: 31620750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance.
    Rao SS; Durga IK; Gopi CV; Venkata Tulasivarma C; Kim SK; Kim HJ
    Dalton Trans; 2015 Jul; 44(28):12852-62. PubMed ID: 26102365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double-Sided Transparent TiO
    Chen C; Ling L; Li F
    Nanoscale Res Lett; 2017 Dec; 12(1):4. PubMed ID: 28054330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TiO
    Li Z; Yu L; Wang H; Yang H; Ma H
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32231107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photocurrent Enhancement of CdSe Quantum-Dot Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes.
    Yang J; Lee J; Lee J; Park T; Yi W
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1347-1350. PubMed ID: 29448589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning band alignment by CdS layers using a SILAR method to enhance TiO2/CdS/CdSe quantum-dot solar-cell performance.
    Zhang B; Zheng J; Li X; Fang Y; Wang LW; Lin Y; Pan F
    Chem Commun (Camb); 2016 Apr; 52(33):5706-9. PubMed ID: 27040601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum dot-sensitized solar cells incorporating nanomaterials.
    Yang Z; Chen CY; Roy P; Chang HT
    Chem Commun (Camb); 2011 Sep; 47(34):9561-71. PubMed ID: 21637864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-assisted SILAR deposition of CdSe quantum dots to construct a high performance of ZnS/CdSe/ZnS quantum dot-sensitized solar cells.
    Jin BB; Kong SY; Zhang GQ; Chen XQ; Ni HS; Zhang F; Wang DJ; Zeng JH
    J Colloid Interface Sci; 2021 Mar; 586():640-646. PubMed ID: 33183753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
    Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quasi-quantum well sensitized solar cell with accelerated charge separation and collection.
    Yan K; Zhang L; Qiu J; Qiu Y; Zhu Z; Wang J; Yang S
    J Am Chem Soc; 2013 Jun; 135(25):9531-9. PubMed ID: 23731331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles.
    Cheng HM; Huang KY; Lee KM; Yu P; Lin SC; Huang JH; Wu CG; Tang J
    Phys Chem Chem Phys; 2012 Oct; 14(39):13539-48. PubMed ID: 22825982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells.
    Becker MA; Radich EJ; Bunker BA; Kamat PV
    J Phys Chem Lett; 2014 May; 5(9):1575-82. PubMed ID: 26270098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.
    Dana J; Maiti S; Tripathi VS; Ghosh HN
    Chemistry; 2018 Feb; 24(10):2418-2425. PubMed ID: 29193394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Mn doping on the electron injection in CdSe/TiO
    Du N; Cui Y; Zhang L; Yang M
    Phys Chem Chem Phys; 2021 Jan; 23(1):647-656. PubMed ID: 33332495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting Power Conversion Efficiency of Quantum Dot-Sensitized Solar Cells by Integrating Concentrating Photovoltaic Concept with Double Photoanodes.
    Xu P; Chang X; Liu R; Wang L; Li X; Zhang X; Yang X; Wang D; Lü W
    Nanoscale Res Lett; 2020 Sep; 15(1):188. PubMed ID: 32990822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.