These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 29974113)

  • 41. Structural Design and Synthesis of an SnO
    Li Q; Wang Y; Tan Q; Zhong Z; Su F
    Chemistry; 2020 Oct; 26(56):12882-12890. PubMed ID: 32700801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hierarchical porous hollow FeFe(CN)
    Ren Z; Hu D; Zhang X; Liu D; Wang C
    Dalton Trans; 2019 Mar; 48(12):4058-4066. PubMed ID: 30849142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superior Electrochemical Properties of Nanofibers Composed of Hollow CoFe2 O4 Nanospheres Covered with Onion-Like Graphitic Carbon.
    Hong YJ; Cho JS; Kang YC
    Chemistry; 2015 Dec; 21(50):18202-8. PubMed ID: 26542385
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries.
    Xue H; Zhao J; Tang J; Gong H; He P; Zhou H; Yamauchi Y; He J
    Chemistry; 2016 Mar; 22(14):4915-23. PubMed ID: 26918383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.
    Park GD; Kang YC
    Chemistry; 2016 Mar; 22(12):4140-6. PubMed ID: 26864320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Li-ion storage performance of novel tube-in-tube structured nanofibers with hollow metal oxide nanospheres covered with a graphitic carbon layer.
    Park GD; Kang YC
    Nanoscale; 2020 Apr; 12(15):8404-8414. PubMed ID: 32239057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.
    Sun YH; Dong PP; Lang X; Chen HY; Nan JM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5880-8. PubMed ID: 26369165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries.
    Liu L; An M; Yang P; Zhang J
    Sci Rep; 2015 Mar; 5():9055. PubMed ID: 25761938
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(19):5835-9. PubMed ID: 24665070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In situ formation of carbon encapsulated nanosheet-assembled MoSe
    Wu L; Tan P; Liu Y; Shang Y; Liu W; Xiong X; Pan J
    J Colloid Interface Sci; 2017 Apr; 491():279-285. PubMed ID: 28049052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries.
    Lin J; Peng Z; Xiang C; Ruan G; Yan Z; Natelson D; Tour JM
    ACS Nano; 2013 Jul; 7(7):6001-6. PubMed ID: 23758123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A High-Capacity and Long-Cycle-Life Lithium-Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO
    Kim C; Jung JW; Yoon KR; Youn DY; Park S; Kim ID
    ACS Nano; 2016 Dec; 10(12):11317-11326. PubMed ID: 28024325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In Situ Formation of Co
    Zeng P; Li J; Ye M; Zhuo K; Fang Z
    Chemistry; 2017 Jul; 23(40):9517-9524. PubMed ID: 28370522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage.
    Jiang Y; Li Y; Zhou P; Yu S; Sun W; Dou S
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26367-73. PubMed ID: 26580088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries.
    Cho JS; Hong YJ; Kang YC
    ACS Nano; 2015 Apr; 9(4):4026-35. PubMed ID: 25768655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hierarchical SnO2 /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithium-Ion Batteries.
    Wang M; Li S; Zhang Y; Huang J
    Chemistry; 2015 Nov; 21(45):16195-202. PubMed ID: 26397841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Multi-Wall Sn/SnO
    Gao S; Wang N; Li S; Li D; Cui Z; Yue G; Liu J; Zhao X; Jiang L; Zhao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2465-2472. PubMed ID: 31788929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.