These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29974257)

  • 1. Investigation on side-product formation during the synthesis of a lactoferrin-derived lactam-bridged cyclic peptide.
    Scala MC; Spensiero A; Pepe G; Bertamino A; Carotenuto A; Grieco P; Novellino E; Gomez-Monterrey IM; Campiglia P; Sala M
    Amino Acids; 2018 Oct; 50(10):1367-1375. PubMed ID: 29974257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted cleavage of Alloc and Allyl Ester protecting groups in solid phase peptide synthesis.
    Wilson KR; Sedberry S; Pescatore R; Vinton D; Love B; Ballard S; Wham BC; Hutchison SK; Williamson EJ
    J Pept Sci; 2016 Oct; 22(10):622-627. PubMed ID: 27501347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Asp-based lactam cyclic peptides using an amide-bonded diaminodiacid to prevent aspartimide formation.
    Li WJ; Chen JY; Zhu HX; Li YM; Xu Y
    Org Biomol Chem; 2024 May; 22(18):3584-3588. PubMed ID: 38623862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution versus solid-phase cyclization strategies for large sidechain lactam-bridged peptides: a comparative study.
    Camarero JA; Cairó JJ; Giralt E; Andreu D
    J Pept Sci; 1995; 1(4):241-50. PubMed ID: 9223002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides.
    Tala SR; Schnell SM; Haskell-Luevano C
    Bioorg Med Chem Lett; 2015 Dec; 25(24):5708-11. PubMed ID: 26555357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and control of aspartimide formation in the synthesis of cyclic peptides.
    Flora D; Mo H; Mayer JP; Khan MA; Yan LZ
    Bioorg Med Chem Lett; 2005 Feb; 15(4):1065-8. PubMed ID: 15686913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-phase synthesis of constrained terminal and internal lactam peptidomimetics.
    Scott WL; Alsina J; Kennedy JH; O'Donnell MJ
    Org Lett; 2004 May; 6(10):1629-32. PubMed ID: 15128253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1,4-diazepine-2,5-dione ring formation during solid phase synthesis of peptides containing aspartic acid beta-benzyl ester.
    Süli-Vargha H; Schlosser G; Ilas J
    J Pept Sci; 2007 Nov; 13(11):742-8. PubMed ID: 17853501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-resin native chemical ligation for cyclic peptide synthesis.
    Tulla-Puche J; Barany G
    J Org Chem; 2004 Jun; 69(12):4101-7. PubMed ID: 15176835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of 'side-chain-to-side-chain' cyclic peptides by Allyl and Alloc strategy: potential for library synthesis.
    Grieco P; Gitu PM; Hruby VJ
    J Pept Res; 2001 Mar; 57(3):250-6. PubMed ID: 11298927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase synthesis of extended lactam ring systems: preparation of amino acid alpha-fluorenylmethyl esters for the synthesis of reverse-extended lactams.
    Zhao Z; Felix AM
    Pept Res; 1994; 7(4):218-23. PubMed ID: 7696841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fmoc-based synthesis of disulfide-rich cyclic peptides.
    Cheneval O; Schroeder CI; Durek T; Walsh P; Huang YH; Liras S; Price DA; Craik DJ
    J Org Chem; 2014 Jun; 79(12):5538-44. PubMed ID: 24918986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribosomal synthesis of peptides with C-terminal lactams, thiolactones, and alkylamides.
    Nakajima E; Goto Y; Sako Y; Murakami H; Suga H
    Chembiochem; 2009 May; 10(7):1186-92. PubMed ID: 19370739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase synthesis of cyclic analogues related to the hypoglycaemic peptide hGH(6-13): comparison of two i-->i + 4 lactam cyclization procedures.
    Cavallaro V; Thompson PE; Hearn MT
    J Pept Sci; 2001 Oct; 7(10):529-36. PubMed ID: 11695648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the amino acid sequence on the conformation of side chain lactam-bridged octapeptides.
    Neukirchen S; Krieger V; Roschger C; Schubert M; Elsässer B; Cabrele C
    J Pept Sci; 2017 Jul; 23(7-8):587-596. PubMed ID: 28370688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of cyclic peptides on a dendrimer: multiple cyclic antigen peptides.
    Spetzler JC; Tam JP
    Pept Res; 1996; 9(6):290-6. PubMed ID: 9048422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of N-linked glycopeptides via solid-phase aspartylation.
    Conroy T; Jolliffe KA; Payne RJ
    Org Biomol Chem; 2010 Aug; 8(16):3723-33. PubMed ID: 20567757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Side-product formation during cyclization with HBTU on a solid support.
    Story SC; Aldrich JV
    Int J Pept Protein Res; 1994 Mar; 43(3):292-6. PubMed ID: 8005752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.