These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 29974739)
1. Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art. Zhang W; Dixon MB; Saint C; Teng KS; Furumai H ACS Sens; 2018 Jul; 3(7):1233-1245. PubMed ID: 29974739 [TBL] [Abstract][Full Text] [Related]
2. Aptamer-Based Biosensors to Detect Aquatic Phycotoxins and Cyanotoxins. Cunha I; Biltes R; Sales M; Vasconcelos V Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037056 [TBL] [Abstract][Full Text] [Related]
3. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Weller MG Sensors (Basel); 2013 Nov; 13(11):15085-112. PubMed ID: 24196435 [TBL] [Abstract][Full Text] [Related]
4. Development of a Multiplexed Electrochemical Aptasensor for the Detection of Cyanotoxins. Rhouati A; Zourob M Biosensors (Basel); 2024 May; 14(6):. PubMed ID: 38920572 [TBL] [Abstract][Full Text] [Related]
6. Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry. Haddad SP; Bobbitt JM; Taylor RB; Lovin LM; Conkle JL; Chambliss CK; Brooks BW J Chromatogr A; 2019 Aug; 1599():66-74. PubMed ID: 30961962 [TBL] [Abstract][Full Text] [Related]
7. Harmful algal blooms. Musty warnings of toxicity. Freeman KS Environ Health Perspect; 2010 Nov; 118(11):A473. PubMed ID: 21465740 [No Abstract] [Full Text] [Related]
8. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon. Ibrahim WM; Salim EH; Azab YA; Ismail AH Toxicol Ind Health; 2016 Oct; 32(10):1752-62. PubMed ID: 25964240 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices. Miglione A; Napoletano M; Cinti S Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562905 [TBL] [Abstract][Full Text] [Related]
10. Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Li Z; Li X; Jian M; Geleta GS; Wang Z Toxins (Basel); 2019 Dec; 12(1):. PubMed ID: 31906152 [TBL] [Abstract][Full Text] [Related]
11. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Testai E; Scardala S; Vichi S; Buratti FM; Funari E Crit Rev Toxicol; 2016; 46(5):385-419. PubMed ID: 26923223 [TBL] [Abstract][Full Text] [Related]
12. Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Farrer D; Counter M; Hillwig R; Cude C Toxins (Basel); 2015 Feb; 7(2):457-77. PubMed ID: 25664510 [TBL] [Abstract][Full Text] [Related]
13. Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode. Du X; Jiang D; Dai L; Zhou L; Hao N; Qian J; Qiu B; Wang K Biosens Bioelectron; 2016 Jul; 81():242-248. PubMed ID: 26963789 [TBL] [Abstract][Full Text] [Related]
14. An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor. Wang Q; Fang J; Cao D; Li H; Su K; Hu N; Wang P Biosens Bioelectron; 2015 Oct; 72():10-7. PubMed ID: 25951085 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical immunosensor for ultrasensitive detection of microcystin-LR based on graphene-gold nanocomposite/functional conducting polymer/gold nanoparticle/ionic liquid composite film with electrodeposition. Ruiyi L; Qianfang X; Zaijun L; Xiulan S; Junkang L Biosens Bioelectron; 2013 Jun; 44():235-40. PubMed ID: 23434759 [TBL] [Abstract][Full Text] [Related]
16. Ultrasensitive label-free electrochemical biosensor for detecting linear microcystin-LR using degrading enzyme MlrB as recognition element. Li Y; Si S; Huang F; Wei J; Dong S; Yang F; Li H; Liu S Bioelectrochemistry; 2022 Apr; 144():108000. PubMed ID: 34906815 [TBL] [Abstract][Full Text] [Related]
17. Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria. Sivonen K Adv Exp Med Biol; 2008; 619():539-57. PubMed ID: 18461783 [TBL] [Abstract][Full Text] [Related]
18. A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. Vogiazi V; de la Cruz A; Mishra S; Shanov V; Heineman WR; Dionysiou DD ACS Sens; 2019 May; 4(5):1151-1173. PubMed ID: 31056912 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of a novel and simple microcystin-LR photoelectrochemical sensor with high sensitivity and selectivity. Chen K; Liu M; Zhao G; Shi H; Fan L; Zhao S Environ Sci Technol; 2012 Nov; 46(21):11955-61. PubMed ID: 23030666 [TBL] [Abstract][Full Text] [Related]
20. Cyanobacterial toxins in New York and the lower Great Lakes ecosystems. Boyer GL Adv Exp Med Biol; 2008; 619():153-65. PubMed ID: 18461769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]