These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29974957)

  • 1. Potential involvement of ubiquitin-proteasome system dysfunction associated with oxidative stress in the pathogenesis of sickle cell disease.
    Warang P; Homma T; Pandya R; Sawant A; Shinde N; Pandey D; Fujii J; Madkaikar M; Mukherjee MB
    Br J Haematol; 2018 Aug; 182(4):559-566. PubMed ID: 29974957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p97 dysfunction underlies a loss of quality control of damaged membrane proteins and promotes oxidative stress and sickling in sickle cell disease.
    Song A; Wen AQ; Wen YE; Dzieciatkowska M; Kellems RE; Juneja HS; D'Alessandro A; Xia Y
    FASEB J; 2022 May; 36(5):e22246. PubMed ID: 35405035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOD1 deficiency decreases proteasomal function, leading to the accumulation of ubiquitinated proteins in erythrocytes.
    Homma T; Kurahashi T; Lee J; Kang ES; Fujii J
    Arch Biochem Biophys; 2015 Oct; 583():65-72. PubMed ID: 26264915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prior exposure of endothelial cells to hydroxycarbamide alters the flow dynamics and adhesion of sickle red blood cells.
    Verger E; Schoëvaërt D; Carrivain P; Victor JM; Lapouméroulie C; Elion J
    Clin Hemorheol Microcirc; 2014; 57(1):9-22. PubMed ID: 24002118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease.
    Strader MB; Jana S; Meng F; Heaven MR; Shet AS; Thein SL; Alayash AI
    Sci Rep; 2020 Aug; 10(1):14218. PubMed ID: 32848178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory.
    Figueiredo LS; de Freitas BS; Garcia VA; Dargél VA; Köbe LM; Kist LW; Bogo MR; Schröder N
    Mol Neurobiol; 2016 Nov; 53(9):6228-6239. PubMed ID: 26558634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress, antioxidant capacity, biomolecule damage, and inflammation symptoms of sickle cell disease in children.
    Biswal S; Rizwan H; Pal S; Sabnam S; Parida P; Pal A
    Hematology; 2019 Dec; 24(1):1-9. PubMed ID: 30010491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cells of sickle cell disease patients exhibit abnormally high abundance of N-methyl D-aspartate receptors mediating excessive calcium uptake.
    Hänggi P; Makhro A; Gassmann M; Schmugge M; Goede JS; Speer O; Bogdanova A
    Br J Haematol; 2014 Oct; 167(2):252-64. PubMed ID: 25041184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma levels of TGF-β1 in homeostasis of the inflammation in sickle cell disease.
    Torres Lde S; Okumura JV; da Silva DG; Belini Júnior É; de Oliveira RG; Mimura KK; Lobo CL; Oliani SM; Bonini Domingos CR
    Cytokine; 2016 Apr; 80():18-25. PubMed ID: 26928604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation.
    Cohen-Kaplan V; Ciechanover A; Livneh I
    Autophagy; 2017 Apr; 13(4):759-760. PubMed ID: 28121483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.
    Siciliano A; Turrini F; Bertoldi M; Matte A; Pantaleo A; Olivieri O; De Franceschi L
    Blood Cells Mol Dis; 2010 Apr; 44(4):233-42. PubMed ID: 20206558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complexity of recognition of ubiquitinated substrates by the 26S proteasome.
    Ciechanover A; Stanhill A
    Biochim Biophys Acta; 2014 Jan; 1843(1):86-96. PubMed ID: 23872423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe?
    Caldeira MV; Salazar IL; Curcio M; Canzoniero LM; Duarte CB
    Prog Neurobiol; 2014 Jan; 112():50-69. PubMed ID: 24157661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The presence of alpha-thalassaemia trait blunts the response to hydroxycarbamide in patients with sickle cell disease.
    Vasavda N; Badiger S; Rees D; Height S; Howard J; Thein SL
    Br J Haematol; 2008 Nov; 143(4):589-92. PubMed ID: 18764867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants.
    Amer J; Ghoti H; Rachmilewitz E; Koren A; Levin C; Fibach E
    Br J Haematol; 2006 Jan; 132(1):108-13. PubMed ID: 16371026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxycarbamide treatment in sickle cell disease: estimates of possible leukaemia risk and of hospitalization survival benefit.
    Castro O; Nouraie M; Oneal P
    Br J Haematol; 2014 Dec; 167(5):687-91. PubMed ID: 25146244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity.
    Demishtein A; Fraiberg M; Berko D; Tirosh B; Elazar Z; Navon A
    Autophagy; 2017 Oct; 13(10):1697-1708. PubMed ID: 28792301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease.
    Alsultan AI; Seif MA; Amin TT; Naboli M; Alsuliman AM
    Eur Rev Med Pharmacol Sci; 2010 Jun; 14(6):527-38. PubMed ID: 20712260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urinary Transforming Growth Factor β-1 as a Marker of Renal Dysfunction in Sickle Cell Disease.
    Ghobrial EE; Abdel-Aziz HA; Kaddah AM; Mubarak NA
    Pediatr Neonatol; 2016 Jun; 57(3):174-80. PubMed ID: 26508723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.