BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29974958)

  • 1. Accounting for landscape heterogeneity improves spatial predictions of tree vulnerability to drought.
    Schwantes AM; Parolari AJ; Swenson JJ; Johnson DM; Domec JC; Jackson RB; Pelak N; Porporato A
    New Phytol; 2018 Oct; 220(1):132-146. PubMed ID: 29974958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape-scale restoration minimizes tree growth vulnerability to 21
    Bradford JB; Andrews CM; Robles MD; McCauley LA; Woolley TJ; Marshall RM
    Ecol Appl; 2021 Mar; 31(2):e2238. PubMed ID: 33067874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.
    Tai X; Mackay DS; Anderegg WR; Sperry JS; Brooks PD
    New Phytol; 2017 Jan; 213(1):113-127. PubMed ID: 27432086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas.
    Schwantes AM; Swenson JJ; González-Roglich M; Johnson DM; Domec JC; Jackson RB
    Glob Chang Biol; 2017 Dec; 23(12):5120-5135. PubMed ID: 28649768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America.
    Hember RA; Kurz WA; Coops NC
    Glob Chang Biol; 2017 Apr; 23(4):1691-1710. PubMed ID: 27624980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species assemblage patterns around a dominant emergent tree are associated with drought resistance.
    Wyse SV; Macinnis-Ng CM; Burns BR; Clearwater MJ; Schwendenmann L
    Tree Physiol; 2013 Dec; 33(12):1269-83. PubMed ID: 24299988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Woodland recovery following drought-induced tree mortality across an environmental stress gradient.
    Redmond MD; Cobb NS; Clifford MJ; Barger NN
    Glob Chang Biol; 2015 Oct; 21(10):3685-95. PubMed ID: 26089027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback.
    Castellaneta M; Rita A; Camarero JJ; Colangelo M; Ripullone F
    Sci Total Environ; 2022 Mar; 813():152666. PubMed ID: 34968613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled effects of wind-storms and drought on tree mortality across 115 forest stands from the Western Alps and the Jura mountains.
    Csilléry K; Kunstler G; Courbaud B; Allard D; Lassègues P; Haslinger K; Gardiner B
    Glob Chang Biol; 2017 Dec; 23(12):5092-5107. PubMed ID: 28580624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tree water balance drives temperate forest responses to drought.
    Berdanier AB; Clark JS
    Ecology; 2018 Nov; 99(11):2506-2514. PubMed ID: 30144047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change.
    Eller CB; Lima AL; Oliveira RS
    New Phytol; 2016 Jul; 211(2):489-501. PubMed ID: 27038126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought.
    McLaughlin BC; Blakey R; Weitz AP; Feng X; Brown BJ; Ackerly DD; Dawson TE; Thompson SE
    Glob Chang Biol; 2020 May; 26(5):3091-3107. PubMed ID: 32056344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction.
    Yoshifuji N; Kumagai T; Ichie T; Kume T; Tateishi M; Inoue Y; Yoneyama A; Nakashizuka T
    J Plant Res; 2020 Mar; 133(2):175-191. PubMed ID: 31858360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation, forest structure, and topography modulate impacts of drought in a tropical forest landscape.
    Schwartz NB; Budsock AM; Uriarte M
    Ecology; 2019 Jun; 100(6):e02677. PubMed ID: 30825323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia.
    De Kauwe MG; Medlyn BE; Ukkola AM; Mu M; Sabot MEB; Pitman AJ; Meir P; Cernusak LA; Rifai SW; Choat B; Tissue DT; Blackman CJ; Li X; Roderick M; Briggs PR
    Glob Chang Biol; 2020 Oct; 26(10):5716-5733. PubMed ID: 32512628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not all droughts are created equal: translating meteorological drought into woody plant mortality.
    Anderegg LD; Anderegg WR; Berry JA
    Tree Physiol; 2013 Jul; 33(7):701-12. PubMed ID: 23880634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers.
    Cano FJ; Sánchez-Gómez D; Rodríguez-Calcerrada J; Warren CR; Gil L; Aranda I
    Plant Cell Environ; 2013 Nov; 36(11):1961-80. PubMed ID: 23527762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands.
    Sánchez-Salguero R; Camarero JJ
    Sci Total Environ; 2020 Jun; 721():137599. PubMed ID: 32172101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-scale stand structure mediates drought-induced tree mortality in pinyon-juniper woodlands.
    Flake SW; Weisberg PJ
    Ecol Appl; 2019 Mar; 29(2):e01831. PubMed ID: 30548934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased drought impacts on temperate rainforests from southern South America: results of a process-based, dynamic forest model.
    Gutiérrez AG; Armesto JJ; Díaz MF; Huth A
    PLoS One; 2014; 9(7):e103226. PubMed ID: 25068869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.