These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 29975509)
1. Improved Triboelectric Nanogenerator Output Performance through Polymer Nanocomposites Filled with Core-shell-Structured Particles. Du X; Liu Y; Wang J; Niu H; Yuan Z; Zhao S; Zhang X; Cao R; Yin Y; Li N; Zhang C; Xing Y; Xu W; Li C ACS Appl Mater Interfaces; 2018 Aug; 10(30):25683-25688. PubMed ID: 29975509 [TBL] [Abstract][Full Text] [Related]
2. Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. Xie L; Huang X; Huang Y; Yang K; Jiang P ACS Appl Mater Interfaces; 2013 Mar; 5(5):1747-56. PubMed ID: 23380893 [TBL] [Abstract][Full Text] [Related]
3. Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO Prateek ; Bhunia R; Siddiqui S; Garg A; Gupta RK ACS Appl Mater Interfaces; 2019 Apr; 11(15):14329-14339. PubMed ID: 30892860 [TBL] [Abstract][Full Text] [Related]
4. Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene). Rahimabady M; Mirshekarloo MS; Yao K; Lu L Phys Chem Chem Phys; 2013 Oct; 15(38):16242-8. PubMed ID: 23999532 [TBL] [Abstract][Full Text] [Related]
5. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. Zhu M; Huang X; Yang K; Zhai X; Zhang J; He J; Jiang P ACS Appl Mater Interfaces; 2014 Nov; 6(22):19644-54. PubMed ID: 25365240 [TBL] [Abstract][Full Text] [Related]
6. High-Energy-Density Polymer Nanocomposites Composed of Newly Structured One-Dimensional BaTiO Pan Z; Yao L; Zhai J; Fu D; Shen B; Wang H ACS Appl Mater Interfaces; 2017 Feb; 9(4):4024-4033. PubMed ID: 28068471 [TBL] [Abstract][Full Text] [Related]
7. Decorating TiO Kang D; Wang G; Huang Y; Jiang P; Huang X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4077-4085. PubMed ID: 29300082 [TBL] [Abstract][Full Text] [Related]
8. Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. Kang X; Pan C; Chen Y; Pu X RSC Adv; 2020 May; 10(30):17752-17759. PubMed ID: 35515611 [TBL] [Abstract][Full Text] [Related]
9. Interfacial engineering tailoring the dielectric behavior and energy density of BaTiO Qian K; Lv X; Chen S; Luo H; Zhang D Dalton Trans; 2018 Sep; 47(36):12759-12768. PubMed ID: 30151511 [TBL] [Abstract][Full Text] [Related]
10. Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO₃ Particles Derived by Molten Salt Method. Fu J; Hou Y; Zheng M; Wei Q; Zhu M; Yan H ACS Appl Mater Interfaces; 2015 Nov; 7(44):24480-91. PubMed ID: 26488870 [TBL] [Abstract][Full Text] [Related]
11. Triboelectric Enhancement of Polyvinylidene Fluoride Membrane Using Magnetic Nanoparticle for Water-Based Energy Harvesting. Vu DL; Ahn KK Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458300 [TBL] [Abstract][Full Text] [Related]
12. Dielectric Characterization of Core-Shell Structured Poly(vinylidene fluoride)- Bouharras FE; Labardi M; Tombari E; Capaccioli S; Raihane M; Améduri B Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771897 [TBL] [Abstract][Full Text] [Related]
13. Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. Rana SMS; Rahman MT; Salauddin M; Sharma S; Maharjan P; Bhatta T; Cho H; Park C; Park JY ACS Appl Mater Interfaces; 2021 Feb; 13(4):4955-4967. PubMed ID: 33475336 [TBL] [Abstract][Full Text] [Related]
14. Achieving high performance poly(vinylidene fluoride) dielectric composites Xie X; He ZZ; Qi XD; Yang JH; Lei YZ; Wang Y Chem Sci; 2019 Sep; 10(35):8224-8235. PubMed ID: 31673322 [TBL] [Abstract][Full Text] [Related]
15. Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material. Huang Y; Huang X; Schadler LS; He J; Jiang P ACS Appl Mater Interfaces; 2016 Sep; 8(38):25496-507. PubMed ID: 27602603 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. Zhang X; Chen W; Wang J; Shen Y; Gu L; Lin Y; Nan CW Nanoscale; 2014 Jun; 6(12):6701-9. PubMed ID: 24816573 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of output performance through post-poling technique on BaTiO Ali D; Yu B; Duan X; Yu H; Zhu M Nanotechnology; 2017 Feb; 28(7):075203. PubMed ID: 28084221 [TBL] [Abstract][Full Text] [Related]
18. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO Wang G; Huang Y; Wang Y; Jiang P; Huang X Phys Chem Chem Phys; 2017 Aug; 19(31):21058-21068. PubMed ID: 28748238 [TBL] [Abstract][Full Text] [Related]
19. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. Yang K; Huang X; Zhu M; Xie L; Tanaka T; Jiang P ACS Appl Mater Interfaces; 2014 Feb; 6(3):1812-22. PubMed ID: 24397561 [TBL] [Abstract][Full Text] [Related]
20. Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement. Lee JW; Cho HJ; Chun J; Kim KN; Kim S; Ahn CW; Kim IW; Kim JY; Kim SW; Yang C; Baik JM Sci Adv; 2017 May; 3(5):e1602902. PubMed ID: 28560339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]