These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 29975509)
21. Enhanced triboelectric properties of Eu Wu XX; Zhang JJ; Lee CH; Lin MF Nanoscale; 2023 Feb; 15(8):3823-3831. PubMed ID: 36723194 [TBL] [Abstract][Full Text] [Related]
22. Synergistic effect of barium titanate nanoparticles and graphene quantum dots on the dielectric properties and conductivity of poly(vinylidenefluoride-co-hexafluoroethylene) films. Kumar YR; Khadheer Pasha SK Environ Res; 2022 Mar; 204(Pt C):112297. PubMed ID: 34740623 [TBL] [Abstract][Full Text] [Related]
23. Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites. Tang H; Zhou Z; Sodano HA ACS Appl Mater Interfaces; 2014 Apr; 6(8):5450-5. PubMed ID: 24670582 [TBL] [Abstract][Full Text] [Related]
24. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3. Luo H; Zhang D; Jiang C; Yuan X; Chen C; Zhou K ACS Appl Mater Interfaces; 2015 Apr; 7(15):8061-9. PubMed ID: 25822911 [TBL] [Abstract][Full Text] [Related]
25. Significantly Enhanced Energy Density in Nanocomposite Capacitors Combining the TiO Yao L; Pan Z; Liu S; Zhai J; Chen HH ACS Appl Mater Interfaces; 2016 Oct; 8(39):26343-26351. PubMed ID: 27623096 [TBL] [Abstract][Full Text] [Related]
26. Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. Chen J; Guo H; He X; Liu G; Xi Y; Shi H; Hu C ACS Appl Mater Interfaces; 2016 Jan; 8(1):736-44. PubMed ID: 26654103 [TBL] [Abstract][Full Text] [Related]
27. Enhanced Dielectric Performance of P(VDF-HFP) Composites with Satellite-Core-Structured Fe Jiang Y; Zhang Z; Zhou Z; Yang H; Zhang Q Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31546597 [TBL] [Abstract][Full Text] [Related]
28. Self-Powering Gas Sensing System Enabled by Double-Layer Triboelectric Nanogenerators Based on Poly(2-vinylpyridine)@BaTiO Oh J; Kim JK; Gao J; Jung S; Kim W; Park G; Park J; Baik JM; Yang C ACS Nano; 2024 May; 18(19):12146-12157. PubMed ID: 38688004 [TBL] [Abstract][Full Text] [Related]
29. Double-Layer Electronegative Structure-Based Triboelectric Nanogenerator for Enhanced Performance Using Combined Effect of Enhanced Charge Generation and Improved Charge Trapping. Mondal A; Faraz M; Dahiya M; Khare N ACS Appl Mater Interfaces; 2024 Sep; 16(38):50659-50670. PubMed ID: 39153183 [TBL] [Abstract][Full Text] [Related]
30. Tuning the Dielectric Constant and Surface Engineering of a BaTiO Tantraviwat D; Ngamyingyoud M; Sripumkhai W; Pattamang P; Rujijanagul G; Inceesungvorn B ACS Omega; 2021 Nov; 6(44):29765-29773. PubMed ID: 34778649 [TBL] [Abstract][Full Text] [Related]
31. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. Wang D; Bao Y; Zha JW; Zhao J; Dang ZM; Hu GH ACS Appl Mater Interfaces; 2012 Nov; 4(11):6273-9. PubMed ID: 23110437 [TBL] [Abstract][Full Text] [Related]
32. Largely enhanced dielectric constant of PVDF nanocomposites through a core-shell strategy. Yang M; Zhao H; Hu C; Haghi-Ashtiani P; He D; Dang ZM; Bai J Phys Chem Chem Phys; 2018 Jan; 20(4):2777-2786. PubMed ID: 29323366 [TBL] [Abstract][Full Text] [Related]
33. Tailored Poly(vinylidene fluoride- Eom K; Shin YE; Kim JK; Joo SH; Kim K; Kwak SK; Ko H; Jin J; Kang SJ Nano Lett; 2020 Sep; 20(9):6651-6659. PubMed ID: 32809835 [TBL] [Abstract][Full Text] [Related]
34. Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO Zhang J; Ma J; Zhang L; Zong C; Xu A; Zhang Y; Geng B; Zhang S RSC Adv; 2020 Feb; 10(12):7065-7072. PubMed ID: 35493868 [TBL] [Abstract][Full Text] [Related]
35. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe Wang Z; Wang T; Wang C; Xiao Y; Jing P; Cui Y; Pu Y ACS Appl Mater Interfaces; 2017 Aug; 9(34):29130-29139. PubMed ID: 28792204 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Kar E; Bose N; Das S; Mukherjee N; Mukherjee S Phys Chem Chem Phys; 2015 Sep; 17(35):22784-98. PubMed ID: 26260070 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles. Jayakumar OD; Abdelhamid EH; Kotari V; Mandal BP; Rao R; Jagannath ; Naik VM; Naik R; Tyagi AK Dalton Trans; 2015 Sep; 44(36):15872-81. PubMed ID: 26274764 [TBL] [Abstract][Full Text] [Related]
38. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Yang K; Huang X; Xie L; Wu C; Jiang P; Tanaka T Macromol Rapid Commun; 2012 Nov; 33(22):1921-6. PubMed ID: 22887717 [TBL] [Abstract][Full Text] [Related]
39. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO Jiang J; Tu S; Fu R; Li J; Hu F; Yan B; Gu Y; Chen S ACS Appl Mater Interfaces; 2020 Jul; 12(30):33989-33998. PubMed ID: 32610011 [TBL] [Abstract][Full Text] [Related]
40. Role of Microstructures in the Dielectric Properties of PVDF-Based Nanocomposites Containing High-Permittivity Fillers for Energy Storage. Padurariu L; Brunengo E; Canu G; Curecheriu LP; Conzatti L; Buscaglia MT; Stagnaro P; Mitoseriu L; Buscaglia V ACS Appl Mater Interfaces; 2023 Mar; 15(10):13535-13544. PubMed ID: 36861349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]