These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29975545)

  • 1. Adsorption and Denaturation of Structured Polymeric Nanoparticles at an Interface.
    Tian C; Feng J; Cho HJ; Datta SS; Prud'homme RK
    Nano Lett; 2018 Aug; 18(8):4854-4860. PubMed ID: 29975545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants.
    Tian C; Feng J; Prud'homme RK
    J Colloid Interface Sci; 2020 Sep; 575():416-424. PubMed ID: 32388288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting Mechanisms of Spontaneous Adsorption at Liquid-Liquid Interfaces of Nanoparticles Constituted of and Grafted with pH-Responsive Polymers.
    Wu D; Honciuc A
    Langmuir; 2018 May; 34(21):6170-6182. PubMed ID: 29730929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Langmuir and Gibbs magnetite NP layers at the air/water interface.
    Stefaniu C; Chanana M; Wang D; Novikov DV; Brezesinski G; Möhwald H
    Langmuir; 2011 Feb; 27(3):1192-9. PubMed ID: 21174426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle adsorption dynamics at fluid interfaces.
    Hua X; Frechette J; Bevan MA
    Soft Matter; 2018 May; 14(19):3818-3828. PubMed ID: 29718061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces.
    Gyulai G; Kiss É
    J Colloid Interface Sci; 2017 Aug; 500():9-19. PubMed ID: 28395164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning Surface Chemistry and Ionic Strength to Control Nanoparticle Adsorption and Elastic Dilational Modulus at Air-Brine Interface.
    Da C; Zhang X; Alzobaidi S; Hu D; Wu P; Johnston KP
    Langmuir; 2021 May; 37(19):5795-5809. PubMed ID: 33944565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of surface tension at liquid-liquid interfaces using nanoparticles and nanoparticle-protein complexes.
    Rana S; Yu X; Patra D; Moyano DF; Miranda OR; Hussain I; Rotello VM
    Langmuir; 2012 Jan; 28(4):2023-7. PubMed ID: 22166076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoassembled Interface for Dynamics Tailoring.
    Huang C; Chen X; Xue Z; Wang T
    Acc Chem Res; 2021 Jan; 54(1):35-45. PubMed ID: 33044822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irreversible adsorption-driven assembly of nanoparticles at fluid interfaces revealed by a dynamic surface tension probe.
    Bizmark N; Ioannidis MA; Henneke DE
    Langmuir; 2014 Jan; 30(3):710-7. PubMed ID: 24397479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of lipid liquid crystalline nanoparticles on cationic, hydrophilic, and hydrophobic surfaces.
    Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T
    ACS Appl Mater Interfaces; 2012 May; 4(5):2643-51. PubMed ID: 22515950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethyl Cellulose Nanoparticles at the Alkane-Water Interface and the Making of Pickering Emulsions.
    Bizmark N; Ioannidis MA
    Langmuir; 2017 Oct; 33(40):10568-10576. PubMed ID: 28862863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of a surfactin nanolayer at solid-liquid and air-liquid interfaces.
    Onaizi SA; Nasser MS; Al-Lagtah NM
    Eur Biophys J; 2016 May; 45(4):331-9. PubMed ID: 26649447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading.
    Kumar N; Couzis A; Maldarelli C
    J Colloid Interface Sci; 2003 Nov; 267(2):272-85. PubMed ID: 14583202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.
    Hua X; Bevan MA; Frechette J
    Langmuir; 2018 Apr; 34(16):4830-4842. PubMed ID: 29631392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.