BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2997569)

  • 1. Effects of cannabinoids on progesterone release in cultures of rat luteal cells.
    Leung PC; Flesher M; Moon YS; Minegishi T
    Life Sci; 1985 Nov; 37(18):1691-6. PubMed ID: 2997569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phorbol ester, phorbol 12-myristate 13-acetate, and a calcium ionophore, A23187, can mimic the luteolytic effect of prostaglandin F2 alpha in isolated rat luteal cells.
    Baum MS; Rosberg S
    Endocrinology; 1987 Mar; 120(3):1019-26. PubMed ID: 3026783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effects of cannabinoids on follicular function in the rat.
    Reich R; Laufer N; Lewysohn O; Cordova T; Ayalon D; Tsafriri A
    Biol Reprod; 1982 Aug; 27(1):223-31. PubMed ID: 6288130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct antigonadal activity of cannabinoids: suppression of rat granulosa cell functions.
    Adashi EY; Jones PB; Hsueh AJ
    Am J Physiol; 1983 Feb; 244(2):E177-85. PubMed ID: 6297308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progesterone production by hamster granulosa and luteal cells during short-term incubation. Effects of lipoproteins, compactin and 25-hydroxycholesterol.
    Silavin SL; Strauss JF
    Biol Reprod; 1983 Dec; 29(5):1163-71. PubMed ID: 6652182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The suppressive effect of delta-1-tetrahydrocannabinol on the steroidogenic activity of rat granulosa cells in culture.
    Lewysohn O; Cordova T; Nimrod A; Ayalon D
    Horm Res; 1984; 19(1):43-51. PubMed ID: 6319259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of transmembrane sodium and potassium gradients inhibits the action of luteinizing hormone in the luteal cell.
    Gore SD; Behrman HR
    Endocrinology; 1984 Jun; 114(6):2020-31. PubMed ID: 6327232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of marijuana extract and delta 9-tetrahydrocannabinol on luteal function in the rhesus monkey.
    Almirez RG; Smith CG; Asch RH
    Fertil Steril; 1983 Feb; 39(2):212-7. PubMed ID: 6295828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estradiol suppression of luteinizing hormone (LH)/human chorionic gonadotropin receptors and LH-sensitive adenylyl cyclase without decreased adenosine 3',5'-monophosphate content in rabbit corpora lutea.
    Miller JB; LaBarbera AR; Hunzicker-Dunn M
    Endocrinology; 1986 May; 118(5):2016-23. PubMed ID: 3009145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium is an inhibitor of luteinizing hormone-sensitive adenylate cyclase in the luteal cell.
    Dorflinger LJ; Albert PJ; Williams AT; Behrman HR
    Endocrinology; 1984 Apr; 114(4):1208-15. PubMed ID: 6323134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, characterization, and culture of cell subpopulations forming the pregnant rat corpus luteum.
    Nelson SE; McLean MP; Jayatilak PG; Gibori G
    Endocrinology; 1992 Feb; 130(2):954-66. PubMed ID: 1733737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steroid hormone release in cultures of pig corpus luteum and granulosa cells: effect of LH, hCG, PRL and estradiol.
    Gregoraszczuk E
    Endocrinol Exp; 1983 Mar; 17(1):59-68. PubMed ID: 6603350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the rapid antigonadotropic action of prostaglandins in cultured luteal cells.
    Thomas JP; Dorflinger LJ; Behrman HR
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1344-8. PubMed ID: 206895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of progesterone from perifused, highly luteinized ovarian cells of rats: effects of luteinizing hormone and bovine serum albumin.
    Bruot BC; Collins DC
    Biol Reprod; 1983 Sep; 29(2):286-94. PubMed ID: 6315090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid hydroperoxides evoke antigonadotropic and antisteroidogenic activity in rat luteal cells.
    Kodaman PH; Aten RF; Behrman HR
    Endocrinology; 1994 Dec; 135(6):2723-30. PubMed ID: 7988463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Luteotropic and luteolytic responsiveness of ovine luteal cells in long-term culture.
    Kong W; Marion SL; Hoyer PB
    Biol Reprod; 1989 Oct; 41(4):707-14. PubMed ID: 2559779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of gonadotropin action and progesterone synthesis by xanthine oxidase in rat luteal cells.
    Gatzuli E; Aten RF; Behrman HR
    Endocrinology; 1991 May; 128(5):2253-8. PubMed ID: 1708332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of PGF2alpha and gonadotropin interactions on LH receptor function in corpora lutea during luteolysis.
    Behrman HR; Grinwich DL; Hichens M
    Adv Prostaglandin Thromboxane Res; 1976; 2():655-66. PubMed ID: 185887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tokishakuyakusan directly attenuates PACAP's luteolytic action on luteal function in the rat ovary.
    Usuki S; Kotani E
    Am J Chin Med; 2002; 30(4):521-31. PubMed ID: 12568279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of luteinizing hormone in the expression of cholesterol side-chain cleavage cytochrome P450 and 3 beta-hydroxysteroid dehydrogenase, delta 5-4 isomerase messenger ribonucleic acids in the primate corpus luteum.
    Ravindranath N; Little-Ihrig L; Benyo DF; Zeleznik AJ
    Endocrinology; 1992 Nov; 131(5):2065-70. PubMed ID: 1425410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.