These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29975733)
1. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. Lin W; Huang W; Ning S; Wang X; Ye Q; Wei D PLoS One; 2018; 13(7):e0199788. PubMed ID: 29975733 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659 [TBL] [Abstract][Full Text] [Related]
3. Full-Length Transcriptome Survey and Expression Analysis of Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624 [TBL] [Abstract][Full Text] [Related]
4. Blue genome: chromosome-scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in Strobilanthes cusia. Xu W; Zhang L; Cunningham AB; Li S; Zhuang H; Wang Y; Liu A Plant J; 2020 Nov; 104(4):864-879. PubMed ID: 32981147 [TBL] [Abstract][Full Text] [Related]
5. [Determination of indirubin and indigo in Baphicacanthus cusia (Nees) Bremek by HPLC]. Hou HC; Liang SZ Zhong Yao Cai; 2006 Jul; 29(7):681-2. PubMed ID: 17059007 [TBL] [Abstract][Full Text] [Related]
6. Convenient preparation of indigo from the Ieaves of Baphicacanthus cusia(Nees) Bremek by enzymatic method and its MALDI-TOF-MS and UPLC-Q-TOF/MS analysis. Chen H; Zhou H; Zhang C; Li W; Xue X; Wang C Enzyme Microb Technol; 2024 Aug; 178():110440. PubMed ID: 38574422 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and metabolomic characterization of the 5-enolpyruvylshikimate-3-phosphate synthase gene from Baphicacanthus cusia. Yu J; Zhang Y; Ning S; Ye Q; Tan H; Chen R; Bu Q; Zhang R; Gong P; Ma X; Zhang L; Wei D BMC Plant Biol; 2019 Nov; 19(1):485. PubMed ID: 31706293 [TBL] [Abstract][Full Text] [Related]
8. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids. Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203 [No Abstract] [Full Text] [Related]
9. [Effects of exogenous salicylic acid on protein expression level in Baphicacanthus cusia (Nees) Bremek leaves]. Xiang XL; Ning SJ; Huang YL; Zhang YJ; Zhu RL; Wei DZ Ying Yong Sheng Tai Xue Bao; 2010 Mar; 21(3):689-93. PubMed ID: 20560326 [TBL] [Abstract][Full Text] [Related]
10. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis of roots, stems and leaves of Isodon amethystoides reveals candidate genes involved in Wangzaozins biosynthesis. Zhao F; Sun M; Zhang W; Jiang C; Teng J; Sheng W; Li M; Zhang A; Duan Y; Xue J BMC Plant Biol; 2018 Nov; 18(1):272. PubMed ID: 30409115 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the Panax ginseng stem/leaf transcriptome and gene expression during the leaf expansion period. Liu S; Liu M; Wang S; Lin Y; Zhang H; Wang Q; Zhao Y Mol Med Rep; 2017 Nov; 16(5):6396-6404. PubMed ID: 28849068 [TBL] [Abstract][Full Text] [Related]
13. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and functional characterization of BcTSA in the biosynthesis of indole alkaloids in Guo Z; Chen J; Lv Z; Huang Y; Tan H; Zhang L; Diao Y Front Plant Sci; 2023; 14():1174582. PubMed ID: 37139111 [No Abstract] [Full Text] [Related]
15. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. Liang W; Ni L; Carballar-Lejarazú R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333 [TBL] [Abstract][Full Text] [Related]
16. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. Gupta P; Goel R; Pathak S; Srivastava A; Singh SP; Sangwan RS; Asif MH; Trivedi PK PLoS One; 2013; 8(5):e62714. PubMed ID: 23667511 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Guo X; Li Y; Li C; Luo H; Wang L; Qian J; Luo X; Xiang L; Song J; Sun C; Xu H; Yao H; Chen S Gene; 2013 Sep; 527(1):131-8. PubMed ID: 23756193 [TBL] [Abstract][Full Text] [Related]
18. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Lateef A; Prabhudas SK; Natarajan P Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583 [TBL] [Abstract][Full Text] [Related]
19. De novo transcriptome sequencing in Pueraria lobata to identify putative genes involved in isoflavones biosynthesis. Wang X; Li S; Li J; Li C; Zhang Y Plant Cell Rep; 2015 May; 34(5):733-43. PubMed ID: 25547742 [TBL] [Abstract][Full Text] [Related]
20. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis. Rai A; Nakaya T; Shimizu Y; Rai M; Nakamura M; Suzuki H; Saito K; Yamazaki M Planta Med; 2018 Aug; 84(12-13):920-934. PubMed ID: 29843181 [No Abstract] [Full Text] [Related] [Next] [New Search]