These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 29975746)
1. Shaping pre-modern digital terrain models: The former topography at Charlemagne's canal construction site. Schmidt J; Werther L; Zielhofer C PLoS One; 2018; 13(7):e0200167. PubMed ID: 29975746 [TBL] [Abstract][Full Text] [Related]
2. Charlemagne's summit canal: an early medieval hydro-engineering project for passing the Central European Watershed. Zielhofer C; Leitholdt E; Werther L; Stele A; Bussmann J; Linzen S; Schneider M; Meyer C; Berg-Hobohm S; Ettel P PLoS One; 2014; 9(9):e108194. PubMed ID: 25251589 [TBL] [Abstract][Full Text] [Related]
3. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Chase AF; Chase DZ; Fisher CT; Leisz SJ; Weishampel JF Proc Natl Acad Sci U S A; 2012 Aug; 109(32):12916-21. PubMed ID: 22802623 [TBL] [Abstract][Full Text] [Related]
4. Detecting Precontact Anthropogenic Microtopographic Features in a Forested Landscape with Lidar: A Case Study from the Upper Great Lakes Region, AD 1000-1600. Howey MC; Sullivan FB; Tallant J; Kopple RV; Palace MW PLoS One; 2016; 11(9):e0162062. PubMed ID: 27584031 [TBL] [Abstract][Full Text] [Related]
5. UAV-Based Digital Terrain Model Generation under Leaf-Off Conditions to Support Teak Plantations Inventories in Tropical Dry Forests. A Case of the Coastal Region of Ecuador. Aguilar FJ; Rivas JR; Nemmaoui A; Peñalver A; Aguilar MA Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027155 [TBL] [Abstract][Full Text] [Related]
6. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Leitold V; Keller M; Morton DC; Cook BD; Shimabukuro YE Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178 [TBL] [Abstract][Full Text] [Related]
7. Geodetic imaging with airborne LiDAR: the Earth's surface revealed. Glennie CL; Carter WE; Shrestha RL; Dietrich WE Rep Prog Phys; 2013 Aug; 76(8):086801. PubMed ID: 23828665 [TBL] [Abstract][Full Text] [Related]
8. Country-wide data of ecosystem structure from the third Dutch airborne laser scanning survey. Kissling WD; Shi Y; Koma Z; Meijer C; Ku O; Nattino F; Seijmonsbergen AC; Grootes MW Data Brief; 2023 Feb; 46():108798. PubMed ID: 36569534 [TBL] [Abstract][Full Text] [Related]
9. Images of the invisible-prospection methods for the documentation of threatened archaeological sites. Neubauer W Naturwissenschaften; 2001 Jan; 88(1):13-24. PubMed ID: 11261352 [TBL] [Abstract][Full Text] [Related]
10. Lidar survey of ancient Maya settlement in the Puuc region of Yucatan, Mexico. Ringle WM; Gallareta Negrón T; May Ciau R; Seligson KE; Fernandez-Diaz JC; Ortegón Zapata D PLoS One; 2021; 16(4):e0249314. PubMed ID: 33909624 [TBL] [Abstract][Full Text] [Related]
11. Systematic Approach for Remote Sensing of Historical Conflict Landscapes with UAV-Based Laserscanning. Storch M; Jarmer T; Adam M; de Lange N Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009762 [TBL] [Abstract][Full Text] [Related]
12. Aerial Laser Scanning Data as a Source of Terrain Modeling in a Fluvial Environment: Biasing Factors of Terrain Height Accuracy. Szabó Z; Tóth CA; Holb I; Szabó S Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32272568 [TBL] [Abstract][Full Text] [Related]
13. Comparability of multi-temporal DTMs derived from different LiDAR platforms: Error sources and uncertainties in the application of geomorphic impact studies. Kamp N; Krenn P; Avian M; Sass O Earth Surf Process Landf; 2023 May; 48(6):1152-1175. PubMed ID: 38505513 [TBL] [Abstract][Full Text] [Related]
14. Impact of input data (in)accuracy on overestimation of visible area in digital viewshed models. Lagner O; Klouček T; Šímová P PeerJ; 2018; 6():e4835. PubMed ID: 29844982 [TBL] [Abstract][Full Text] [Related]
15. LiDAR-guided Archaeological Survey of a Mediterranean Landscape: Lessons from the Ancient Greek Polis of Kolophon (Ionia, Western Anatolia). Grammer B; Draganits E; Gretscher M; Muss U Archaeol Prospect; 2017; 24(4):311-333. PubMed ID: 29242700 [TBL] [Abstract][Full Text] [Related]
16. Uncovering archaeological landscapes at Angkor using lidar. Evans DH; Fletcher RJ; Pottier C; Chevance JB; Soutif D; Tan BS; Im S; Ea D; Tin T; Kim S; Cromarty C; De Greef S; Hanus K; Bâty P; Kuszinger R; Shimoda I; Boornazian G Proc Natl Acad Sci U S A; 2013 Jul; 110(31):12595-600. PubMed ID: 23847206 [TBL] [Abstract][Full Text] [Related]
17. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region. Penížek V; Zádorová T; Kodešová R; Vaněk A PLoS One; 2016; 11(11):e0165699. PubMed ID: 27846230 [TBL] [Abstract][Full Text] [Related]
18. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites. Maynard JJ; Karl JW PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731 [TBL] [Abstract][Full Text] [Related]
19. High-resolution topography for Digital Terrain Model (DTM) in Keller Peninsula, Maritime Antarctica. Schünemann AL; Almeida PHA; Thomazini A; Fernandes Filho EI; Francelino MR; Schaefer CEGR; Pereira AB An Acad Bras Cienc; 2018 Aug; 90(2 suppl 1):2001-2010. PubMed ID: 30066744 [TBL] [Abstract][Full Text] [Related]
20. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Eker R; Aydın A; Hübl J Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]