These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29975817)

  • 21. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Catalytic Nanoreactor Based on in Vivo Encapsulation of Multiple Enzymes in an Engineered Protein Nanocompartment.
    Giessen TW; Silver PA
    Chembiochem; 2016 Oct; 17(20):1931-1935. PubMed ID: 27504846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring Assembly of Virus Capsids with Nanofluidic Devices.
    Harms ZD; Selzer L; Zlotnick A; Jacobson SC
    ACS Nano; 2015 Sep; 9(9):9087-96. PubMed ID: 26266555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diffusion-Limited Cargo Loading of an Engineered Protein Container.
    Zschoche R; Hilvert D
    J Am Chem Soc; 2015 Dec; 137(51):16121-32. PubMed ID: 26637019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled encapsulation of multiple proteins in virus capsids.
    Minten IJ; Hendriks LJ; Nolte RJ; Cornelissen JJ
    J Am Chem Soc; 2009 Dec; 131(49):17771-3. PubMed ID: 19995072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cargo Retention inside P22 Virus-Like Particles.
    McCoy K; Selivanovitch E; Luque D; Lee B; Edwards E; Castón JR; Douglas T
    Biomacromolecules; 2018 Sep; 19(9):3738-3746. PubMed ID: 30092631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics versus Thermodynamics in Virus Capsid Polymorphism.
    Moerman P; van der Schoot P; Kegel W
    J Phys Chem B; 2016 Jul; 120(26):6003-9. PubMed ID: 27027925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.
    Rath SL; Liu H; Okazaki S; Shinoda W
    J Chem Inf Model; 2018 Feb; 58(2):328-337. PubMed ID: 29309148
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification of CCMV Nanocages for Enzyme Encapsulation.
    Schoonen L; van Hest JCM
    Methods Mol Biol; 2018; 1798():69-83. PubMed ID: 29868952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Viral capsids as self-assembling templates for new materials.
    Dedeo MT; Finley DT; Francis MB
    Prog Mol Biol Transl Sci; 2011; 103():353-92. PubMed ID: 22000000
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry.
    Snijder J; van de Waterbeemd M; Damoc E; Denisov E; Grinfeld D; Bennett A; Agbandje-McKenna M; Makarov A; Heck AJ
    J Am Chem Soc; 2014 May; 136(20):7295-9. PubMed ID: 24787140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical Coarse-Grained Strategy for Macromolecular Self-Assembly: Application to Hepatitis B Virus-Like Particles.
    Depta PN; Dosta M; Wenzel W; Kozlowska M; Heinrich S
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of hepatitis B virus capsids by resistive-pulse sensing.
    Zhou K; Li L; Tan Z; Zlotnick A; Jacobson SC
    J Am Chem Soc; 2011 Feb; 133(6):1618-21. PubMed ID: 21265511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro assembly of polymorphic virus-like particles from the capsid protein of a nodavirus.
    Bajaj S; Banerjee M
    Virology; 2016 Sep; 496():106-115. PubMed ID: 27289029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vitro fluorescence screen to identify antivirals that disrupt hepatitis B virus capsid assembly.
    Stray SJ; Johnson JM; Kopek BG; Zlotnick A
    Nat Biotechnol; 2006 Mar; 24(3):358-62. PubMed ID: 16474383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pocket-factor-triggered conformational switch in the hepatitis B virus capsid.
    Lecoq L; Wang S; Dujardin M; Zimmermann P; Schuster L; Fogeron ML; Briday M; Schledorn M; Wiegand T; Cole L; Montserret R; Bressanelli S; Meier BH; Nassal M; Böckmann A
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33879615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic theory of virus capsid assembly.
    van der Schoot P; Zandi R
    Phys Biol; 2007 Nov; 4(4):296-304. PubMed ID: 18185007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation.
    Starr CA; Nair S; Huang SY; Hagan MF; Jacobson SC; Zlotnick A
    J Am Chem Soc; 2023 Feb; 145(4):2322-2331. PubMed ID: 36651799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High plasticity of the hepatitis B virus capsid revealed by conformational stress.
    Böttcher B; Vogel M; Ploss M; Nassal M
    J Mol Biol; 2006 Feb; 356(3):812-22. PubMed ID: 16378623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide-directed encapsulation of inorganic nanoparticles into protein containers.
    Künzle M; Mangler J; Lach M; Beck T
    Nanoscale; 2018 Dec; 10(48):22917-22926. PubMed ID: 30499576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.