These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29975865)

  • 41. Molecular dynamics simulations of PAMAM dendrimer-induced pore formation in DPPC bilayers with a coarse-grained model.
    Lee H; Larson RG
    J Phys Chem B; 2006 Sep; 110(37):18204-11. PubMed ID: 16970437
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding Effects of PAMAM Dendrimer Size and Surface Chemistry on Serum Protein Binding with Discrete Molecular Dynamics Simulations.
    Wang B; Sun Y; Davis TP; Ke PC; Wu Y; Ding F
    ACS Sustain Chem Eng; 2018 Sep; 6(9):11704-11715. PubMed ID: 30881771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles.
    Chanphai P; Tajmir-Riahi HA
    J Biomol Struct Dyn; 2018 Oct; 36(13):3487-3495. PubMed ID: 29019428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unveiling the G4-PAMAM capacity to bind and protect Ang-(1-7) bioactive peptide by molecular dynamics simulations.
    Chi LA; Asgharpour S; Correa-Basurto J; Bandala CR; Martínez-Archundia M
    J Comput Aided Mol Des; 2022 Sep; 36(9):653-675. PubMed ID: 35934747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complexation of peptide epitopes with G4-PAMAM dendrimer through ligand diffusion molecular dynamic simulations.
    Bello M; Rodríguez-Fonseca RA; Correa-Basurto J
    J Mol Graph Model; 2020 May; 96():107514. PubMed ID: 31877401
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular Dynamics Simulations of PAMAM and PPI Dendrimers Using the GROMOS-Compatible 2016H66 Force Field.
    Ramos MC; Horta VAC; Horta BAC
    J Chem Inf Model; 2019 Apr; 59(4):1444-1457. PubMed ID: 30875214
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PAMAM G4 dendrimers as inhibitors of the iron storage properties of human L-chain ferritin.
    Camarada MB; Márquez-Miranda V; Araya-Durán I; Yévenes A; González-Nilo F
    Phys Chem Chem Phys; 2015 Jul; 17(29):19001-11. PubMed ID: 26126644
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Binding of Folate-G4-PAMAM dendrimer conjugate with indomethacin via ligand diffusion MD simulations.
    Martínez-Muñoz A; Correa-Basurto J; Bello M
    J Biomol Struct Dyn; 2022 Jul; 40(10):4739-4749. PubMed ID: 33345730
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction.
    Márquez-Miranda V; Araya-Durán I; Camarada MB; Comer J; Valencia-Gallegos JA; González-Nilo FD
    Sci Rep; 2016 Jul; 6():29436. PubMed ID: 27377641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamical Interactions of 5-Fluorouracil Drug with Dendritic Peptide Vectors: The Impact of Dendrimer Generation, Charge, Counterions, and Structured Water.
    De Luca S; Seal P; Ouyang D; Parekh HS; Kannam SK; Smith SC
    J Phys Chem B; 2016 Jun; 120(25):5732-43. PubMed ID: 27267604
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PAMAM G4 dendrimers affect the aggregation of α-synuclein.
    Milowska K; Malachowska M; Gabryelak T
    Int J Biol Macromol; 2011 Jun; 48(5):742-6. PubMed ID: 21382406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane.
    Lombardo D; Calandra P; Bellocco E; Laganà G; Barreca D; Magazù S; Wanderlingh U; Kiselev MA
    Biochim Biophys Acta; 2016 Nov; 1858(11):2769-2777. PubMed ID: 27521487
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery.
    Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y
    Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrostatic complex of neurotrophin 4 with dendrimer nanoparticles: controlled release of protein in vitro and in vivo.
    Dąbkowska M; Rogińska D; Kłos P; Sobuś A; Adamczak M; Litwińska Z; Machalińska A; Machaliński B
    Int J Nanomedicine; 2019; 14():6117-6131. PubMed ID: 31534337
    [No Abstract]   [Full Text] [Related]  

  • 55. Specific binding structures of dendrimers on lipid bilayer membranes.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2012 Jun; 14(23):8348-59. PubMed ID: 22585181
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spectroscopic and molecular modeling studies of the interaction between morin and polyamidoamine dendrimer.
    Zhang H; Cao J; Wang Y
    Luminescence; 2014 Sep; 29(6):573-8. PubMed ID: 24108475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. pH controlled gating of toxic protein pores by dendrimers.
    Mandal T; Kanchi S; Ayappa KG; Maiti PK
    Nanoscale; 2016 Jul; 8(26):13045-58. PubMed ID: 27328315
    [TBL] [Abstract][Full Text] [Related]  

  • 58. pH and generation dependent morphologies of PAMAM dendrimers on a graphene substrate.
    Gosika M; Maiti PK
    Soft Matter; 2018 Mar; 14(10):1925-1938. PubMed ID: 29473069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of pH on PAMAM dendrimer-siRNA complexation: endosomal considerations as determined by molecular dynamics simulation.
    Ouyang D; Zhang H; Parekh HS; Smith SC
    Biophys Chem; 2011 Oct; 158(2-3):126-33. PubMed ID: 21752532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular Perspective Mechanism for Drug Loading on Carbon Nanotube-Dendrimer: A Coarse-Grained Molecular Dynamics Study.
    Kavyani S; Dadvar M; Modarress H; Amjad-Iranagh S
    J Phys Chem B; 2018 Aug; 122(33):7956-7969. PubMed ID: 30067904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.