These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29975904)
1. Highly dispersed lithium doped mesoporous silica nanospheres regulating adhesion, proliferation, morphology, ALP activity and osteogenesis related gene expressions of BMSCs. Zhang J; Cai L; Tang L; Zhang X; Yang L; Zheng K; He A; Boccaccini AR; Wei J; Zhao J Colloids Surf B Biointerfaces; 2018 Oct; 170():563-571. PubMed ID: 29975904 [TBL] [Abstract][Full Text] [Related]
2. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent. Shi M; Xia L; Chen Z; Lv F; Zhu H; Wei F; Han S; Chang J; Xiao Y; Wu C Biomaterials; 2017 Nov; 144():176-187. PubMed ID: 28837959 [TBL] [Abstract][Full Text] [Related]
3. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Shi M; Chen Z; Farnaghi S; Friis T; Mao X; Xiao Y; Wu C Acta Biomater; 2016 Jan; 30():334-344. PubMed ID: 26596565 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Shi M; Zhou Y; Shao J; Chen Z; Song B; Chang J; Wu C; Xiao Y Acta Biomater; 2015 Jul; 21():178-89. PubMed ID: 25910640 [TBL] [Abstract][Full Text] [Related]
5. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. Zhou X; Feng W; Qiu K; Chen L; Wang W; Nie W; Mo X; He C ACS Appl Mater Interfaces; 2015 Jul; 7(29):15777-89. PubMed ID: 26133753 [TBL] [Abstract][Full Text] [Related]
6. Peptide-laden mesoporous silica nanoparticles with promoted bioactivity and osteo-differentiation ability for bone tissue engineering. Luo Z; Deng Y; Zhang R; Wang M; Bai Y; Zhao Q; Lyu Y; Wei J; Wei S Colloids Surf B Biointerfaces; 2015 Jul; 131():73-82. PubMed ID: 25969416 [TBL] [Abstract][Full Text] [Related]
7. Lithium doped silica nanospheres/poly(dopamine) composite coating on polyetheretherketone to stimulate cell responses, improve bone formation and osseointegration. Zhang J; Cai L; Wang T; Tang S; Li Q; Tang T; Wei S; Qian J; Wei J; Su J Nanomedicine; 2018 Apr; 14(3):965-976. PubMed ID: 29408735 [TBL] [Abstract][Full Text] [Related]
8. Carbon monoxide releasing molecule‑3 promotes the osteogenic differentiation of rat bone marrow mesenchymal stem cells by releasing carbon monoxide. Li J; Song L; Hou M; Wang P; Wei L; Song H Int J Mol Med; 2018 Apr; 41(4):2297-2305. PubMed ID: 29393384 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of Cerium Oxide into Hydroxyapatite Coating Protects Bone Marrow Stromal Cells Against H Li K; Shen Q; Xie Y; You M; Huang L; Zheng X Biol Trace Elem Res; 2018 Mar; 182(1):91-104. PubMed ID: 28624869 [TBL] [Abstract][Full Text] [Related]
10. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177 [TBL] [Abstract][Full Text] [Related]
11. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029 [TBL] [Abstract][Full Text] [Related]
12. Construction of a PEGDA/chitosan hydrogel incorporating mineralized copper-doped mesoporous silica nanospheres for accelerated bone regeneration. Hia EM; Jang SR; Maharjan B; Park J; Park CH; Kim CS Int J Biol Macromol; 2024 Mar; 262(Pt 2):130218. PubMed ID: 38367780 [TBL] [Abstract][Full Text] [Related]
13. bFGF-Loaded Mesoporous Silica Nanoparticles Promote Bone Regeneration Through the Wnt/β-Catenin Signalling Pathway. Shen M; Wang L; Feng L; Gao Y; Li S; Wu Y; Xu C; Pei G Int J Nanomedicine; 2022; 17():2593-2608. PubMed ID: 35698561 [TBL] [Abstract][Full Text] [Related]
14. Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Fu Y; Zhang P; Ge J; Cheng J; Dong W; Yuan H; Du Y; Yang M; Sun R; Jiang H Int J Biochem Cell Biol; 2014 Sep; 54():68-77. PubMed ID: 25019367 [TBL] [Abstract][Full Text] [Related]
16. Regeneration of large bone defects using mesoporous silica coated magnetic nanoparticles during distraction osteogenesis. Jia Y; Zhang P; Sun Y; Kang Q; Xu J; Zhang C; Chai Y Nanomedicine; 2019 Oct; 21():102040. PubMed ID: 31228602 [TBL] [Abstract][Full Text] [Related]
17. Enhanced cytocompatibility and osteoinductive properties of sol-gel-derived silica/zirconium dioxide coatings by metformin functionalization. Śmieszek A; Szydlarska J; Mucha A; Chrapiec M; Marycz K J Biomater Appl; 2017 Nov; 32(5):570-586. PubMed ID: 29113566 [TBL] [Abstract][Full Text] [Related]
18. miR-214 suppresses the osteogenic differentiation of bone marrow-derived mesenchymal stem cells and these effects are mediated through the inhibition of the JNK and p38 pathways. Guo Y; Li L; Gao J; Chen X; Sang Q Int J Mol Med; 2017 Jan; 39(1):71-80. PubMed ID: 27959394 [TBL] [Abstract][Full Text] [Related]
19. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
20. [Preliminary study on pH-sensitive lipid bilayer-coated mesoporous silica nanoparticles as a novel drug carrier for antitumor drug]. Li FF; Zhang XX; Guo SY; Gan Y; Li J Yao Xue Xue Bao; 2013 Feb; 48(2):291-7. PubMed ID: 23672029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]