These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 29976006)

  • 21. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.
    Lin D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.
    Anawar HM; Rengel Z; Damon P; Tibbett M
    Environ Pollut; 2018 Feb; 233():1003-1012. PubMed ID: 29033177
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of lead bioavailability in smelter-contaminated soils by single and sequential extraction procedure.
    Chen S; Sun L; Chao L; Zhou Q; Sun T
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):43-7. PubMed ID: 18854907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.
    Khan AG
    J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.
    Gong X; Huang D; Liu Y; Peng Z; Zeng G; Xu P; Cheng M; Wang R; Wan J
    Crit Rev Biotechnol; 2018 May; 38(3):455-468. PubMed ID: 28903604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils.
    Khan S; Afzal M; Iqbal S; Khan QM
    Chemosphere; 2013 Jan; 90(4):1317-32. PubMed ID: 23058201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals.
    Gupta DK; Chatterjee S; Datta S; Veer V; Walther C
    Chemosphere; 2014 Aug; 108():134-44. PubMed ID: 24560283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils.
    Uchimiya M; Bannon D; Nakanishi H; McBride MB; Williams MA; Yoshihara T
    J Agric Food Chem; 2020 Nov; 68(46):12856-12869. PubMed ID: 32155055
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioremediation of copper-contaminated soils by bacteria.
    Cornu JY; Huguenot D; Jézéquel K; Lollier M; Lebeau T
    World J Microbiol Biotechnol; 2017 Feb; 33(2):26. PubMed ID: 28044274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
    Epelde L; Becerril JM; Mijangos I; Garbisu C
    J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.
    Li X; Peng W; Jia Y; Lu L; Fan W
    Chemosphere; 2016 Aug; 156():228-235. PubMed ID: 27179240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental impact and bioremediation of seleniferous soils and sediments.
    Wadgaonkar SL; Nancharaiah YV; Esposito G; Lens PNL
    Crit Rev Biotechnol; 2018 Sep; 38(6):941-956. PubMed ID: 29302994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.
    Ok YS; Usman AR; Lee SS; Abd El-Azeem SA; Choi B; Hashimoto Y; Yang JE
    Chemosphere; 2011 Oct; 85(4):677-82. PubMed ID: 21764102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects.
    Abbas G; Murtaza B; Bibi I; Shahid M; Niazi NK; Khan MI; Amjad M; Hussain M;
    Int J Environ Res Public Health; 2018 Jan; 15(1):. PubMed ID: 29301332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioavailability and biodegradation of prosulfocarb in soil.
    Gennari M; Ambrosoli R; Nègre M; Minati JL
    J Environ Sci Health B; 2002 Jul; 37(4):297-305. PubMed ID: 12081022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.
    Olaniran AO; Balgobind A; Pillay B
    Int J Mol Sci; 2013 May; 14(5):10197-228. PubMed ID: 23676353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation.
    Chen L; Liu JR; Hu WF; Gao J; Yang JY
    J Hazard Mater; 2021 Mar; 405():124200. PubMed ID: 33092873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.