BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29976020)

  • 1. Formation of the pronephros and pronephric duct rudiment in the Mexican axolotl.
    Gillespie LL; Armstrong JB
    J Morphol; 1985 Aug; 185(2):217-222. PubMed ID: 29976020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evidence for a proteinaceous presegmental wave required for morphogenesis of axolotl mesoderm.
    Gillespie LL; Armstrong JB; Steinberg MS
    Dev Biol; 1985 Jan; 107(1):220-6. PubMed ID: 3965323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphibian pronephric duct morphogenesis: segregation, cell rearrangement and directed migration of the Ambystoma duct rudiment.
    Poole TJ; Steinberg MS
    J Embryol Exp Morphol; 1981 Jun; 63():1-16. PubMed ID: 7310283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low resistance junctions between mesoderm cells during development of trunk muscles.
    Blackshaw SE; Warner AE
    J Physiol; 1976 Feb; 255(1):209-30. PubMed ID: 1255515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scanning electron microscope survey of the origin of the primordial pronephric duct cells in the avian embryo.
    Jarzem J; Meier SP
    Anat Rec; 1987 Jun; 218(2):175-81. PubMed ID: 3619085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different modes of pronephric duct origin among vertebrates.
    Poole TJ; Steinberg MS
    Scan Electron Microsc; 1984; (Pt 1):475-82. PubMed ID: 6740242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscular derivatives of the cranialmost somites revealed by long-term fate mapping in the Mexican axolotl (Ambystoma mexicanum).
    Piekarski N; Olsson L
    Evol Dev; 2007; 9(6):566-78. PubMed ID: 17976053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum.
    Epperlein HH; Löfberg J
    Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Contribution of somite cells to the development of posterior limb buds in mice].
    Milaire J
    Arch Biol (Liege); 1976; 87(3):315-43. PubMed ID: 1020950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell rearrangement and directional migration in pronephric duct development.
    Poole TJ
    Scanning Microsc; 1988 Mar; 2(1):411-5. PubMed ID: 3368767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive patterning precedes somite segmentation in the Mexican axolotl (Ambystoma mexicanum).
    Armstrong JB; Graveson AC
    Dev Biol; 1988 Mar; 126(1):1-6. PubMed ID: 3342928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The epidermis is a source of directional information for the migrating pronephric duct in Ambystoma mexicanum embryos.
    Drawbridge J; Wolfe AE; Delgado YL; Steinberg MS
    Dev Biol; 1995 Dec; 172(2):440-51. PubMed ID: 8612962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier.
    Della Gaspera B; Mateus A; Andéol Y; Weill L; Charbonnier F; Chanoine C
    Dev Biol; 2019 Sep; 453(1):11-18. PubMed ID: 31128088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the brachial somites in the development of the appendicular musculature in rat embryos.
    Lee KK; Sze LY
    Dev Dyn; 1993 Oct; 198(2):86-96. PubMed ID: 8305709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphibian (urodele) myotomes display transitory anterior/posterior and medial/lateral differentiation patterns.
    Neff AW; Malacinski GM; Chung HM
    Dev Biol; 1989 Apr; 132(2):529-43. PubMed ID: 2647546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The control of pigment cell pattern formation in the California newt, Taricha torosa.
    Tucker RP; Erickson CA
    J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A somitic contribution to the pectoral girdle in the axolotl revealed by long-term fate mapping.
    Piekarski N; Olsson L
    Evol Dev; 2011; 13(1):47-57. PubMed ID: 21210942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and characterization of chicken Paraxis: a regulator of paraxial mesoderm development and somite formation.
    Barnes GL; Alexander PG; Hsu CW; Mariani BD; Tuan RS
    Dev Biol; 1997 Sep; 189(1):95-111. PubMed ID: 9281340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control of somitogenesis in mouse embryos.
    Tam PP
    J Embryol Exp Morphol; 1981 Oct; 65 Suppl():103-28. PubMed ID: 6801176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.