These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29976689)

  • 1. At the Heart of Genome Editing and Cardiovascular Diseases.
    Hernandez-Benitez R; Martinez-Martinez ML; Lajara J; Magistretti P; Montserrat N; Izpisua Belmonte JC
    Circ Res; 2018 Jul; 123(2):221-223. PubMed ID: 29976689
    [No Abstract]   [Full Text] [Related]  

  • 2. How genome editing could be used in the treatment of cardiovascular diseases.
    Musunuru K
    Per Med; 2018 Mar; 15(2):67-69. PubMed ID: 29714123
    [No Abstract]   [Full Text] [Related]  

  • 3. Scientists Correct a Pathogenic Gene Mutation in Human Embryos.
    Hampton T
    Circulation; 2017 Oct; 136(15):1449-1450. PubMed ID: 28993374
    [No Abstract]   [Full Text] [Related]  

  • 4. Therapeutic editing of hepatocyte genome in vivo.
    Ruiz de Galarreta M; Lujambio A
    J Hepatol; 2017 Oct; 67(4):818-828. PubMed ID: 28527665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Editing in Cardiovascular Biology.
    Seeger T; Porteus M; Wu JC
    Circ Res; 2017 Mar; 120(5):778-780. PubMed ID: 28254802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome editing: the end of the beginning.
    Doudna JA; Gersbach CA
    Genome Biol; 2015 Dec; 16():292. PubMed ID: 26700220
    [No Abstract]   [Full Text] [Related]  

  • 7. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
    Hashemi A
    Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction.
    Hagan M; Ashraf M; Kim IM; Weintraub NL; Tang Y
    Med Hypotheses; 2018 Jan; 110():97-100. PubMed ID: 29317080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated genome editing in human stem cell-derived cardiomyocytes: Applications for cardiovascular disease modelling and cardiotoxicity screening.
    Christidi E; Huang HM; Brunham LR
    Drug Discov Today Technol; 2018 Aug; 28():13-21. PubMed ID: 30205876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delivering the goods: scientists seek a way to make CRISPR-Cas gene editing more targeted.
    Keener AB
    Nat Med; 2015 Nov; 21(11):1239-41. PubMed ID: 26540380
    [No Abstract]   [Full Text] [Related]  

  • 11. A genome editing primer for the hematologist.
    Hoban MD; Bauer DE
    Blood; 2016 May; 127(21):2525-35. PubMed ID: 27053532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
    Termglinchan V; Seeger T; Chen C; Wu JC; Karakikes I
    Methods Mol Biol; 2017; 1521():55-68. PubMed ID: 27910041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hope and Hype of CRISPR-Cas9 Genome Editing: A Review.
    Musunuru K
    JAMA Cardiol; 2017 Aug; 2(8):914-919. PubMed ID: 28614576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing During Development Using the CRISPR-Cas Technology.
    Arzate-Mejía RG; Licona-Limón P; Recillas-Targa F
    Methods Mol Biol; 2018; 1752():177-190. PubMed ID: 29564772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.
    Yumlu S; Bashir S; Stumm J; Kühn R
    Methods Mol Biol; 2019; 1961():137-151. PubMed ID: 30912045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise and efficient scarless genome editing in stem cells using CORRECT.
    Kwart D; Paquet D; Teo S; Tessier-Lavigne M
    Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Gene Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases.
    Merkert S; Martin U
    Adv Biochem Eng Biotechnol; 2018; 163():169-186. PubMed ID: 29124278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.