BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29976797)

  • 1. Unusual high thermal conductivity in boron arsenide bulk crystals.
    Tian F; Song B; Chen X; Ravichandran NK; Lv Y; Chen K; Sullivan S; Kim J; Zhou Y; Liu TH; Goni M; Ding Z; Sun J; Udalamatta Gamage GAG; Sun H; Ziyaee H; Huyan S; Deng L; Zhou J; Schmidt AJ; Chen S; Chu CW; Huang PY; Broido D; Shi L; Chen G; Ren Z
    Science; 2018 Aug; 361(6402):582-585. PubMed ID: 29976797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental observation of high thermal conductivity in boron arsenide.
    Kang JS; Li M; Wu H; Nguyen H; Hu Y
    Science; 2018 Aug; 361(6402):575-578. PubMed ID: 29976798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High thermal conductivity in cubic boron arsenide crystals.
    Li S; Zheng Q; Lv Y; Liu X; Wang X; Huang PY; Cahill DG; Lv B
    Science; 2018 Aug; 361(6402):579-581. PubMed ID: 29976796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High ambipolar mobility in cubic boron arsenide.
    Shin J; Gamage GA; Ding Z; Chen K; Tian F; Qian X; Zhou J; Lee H; Zhou J; Shi L; Nguyen T; Han F; Li M; Broido D; Schmidt A; Ren Z; Chen G
    Science; 2022 Jul; 377(6604):437-440. PubMed ID: 35862526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride.
    Chen K; Song B; Ravichandran NK; Zheng Q; Chen X; Lee H; Sun H; Li S; Udalamatta Gamage GAG; Tian F; Ding Z; Song Q; Rai A; Wu H; Koirala P; Schmidt AJ; Watanabe K; Lv B; Ren Z; Shi L; Cahill DG; Taniguchi T; Broido D; Chen G
    Science; 2020 Jan; 367(6477):555-559. PubMed ID: 31919128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond?
    Lindsay L; Broido DA; Reinecke TL
    Phys Rev Lett; 2013 Jul; 111(2):025901. PubMed ID: 23889420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-channel model for ultralow thermal conductivity of crystalline Tl
    Mukhopadhyay S; Parker DS; Sales BC; Puretzky AA; McGuire MA; Lindsay L
    Science; 2018 Jun; 360(6396):1455-1458. PubMed ID: 29954978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous thermal transport under high pressure in boron arsenide.
    Li S; Qin Z; Wu H; Li M; Kunz M; Alatas A; Kavner A; Hu Y
    Nature; 2022 Dec; 612(7940):459-464. PubMed ID: 36418403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide.
    Ravichandran NK; Broido D
    Nat Commun; 2019 Feb; 10(1):827. PubMed ID: 30783095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite.
    Machida Y; Matsumoto N; Isono T; Behnia K
    Science; 2020 Jan; 367(6475):309-312. PubMed ID: 31949080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-momentum excitons and the role of electron-phonon couplings in the electronic and phonon transport properties of boron arsenide.
    Mei H; Xia Y; Zhang Y; Wu Y; Chen Y; Ma C; Kong M; Peng L; Zhu H; Zhang H
    Phys Chem Chem Phys; 2022 Apr; 24(16):9384-9393. PubMed ID: 35383793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralow thermal conductivity in disordered, layered WSe2 crystals.
    Chiritescu C; Cahill DG; Nguyen N; Johnson D; Bodapati A; Keblinski P; Zschack P
    Science; 2007 Jan; 315(5810):351-3. PubMed ID: 17170252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Thermal Conductivity in Boron Arsenide: From Prediction to Reality.
    Tian F; Ren Z
    Angew Chem Int Ed Engl; 2019 Apr; 58(18):5824-5831. PubMed ID: 30523650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-Dependent Behavior of Defect-Modulated Band Structure in Boron Arsenide.
    Meng X; Singh A; Juneja R; Zhang Y; Tian F; Ren Z; Singh AK; Shi L; Lin JF; Wang Y
    Adv Mater; 2020 Nov; 32(45):e2001942. PubMed ID: 33015896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap.
    Guo SD; Liu BG
    J Phys Condens Matter; 2018 Mar; 30(10):105701. PubMed ID: 29376833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study.
    Raeisi M; Ahmadi S; Rajabpour A
    Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates.
    Wu J; Zhou E; Huang A; Zhang H; Hu M; Qin G
    Nat Commun; 2024 Mar; 15(1):2540. PubMed ID: 38528017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.