These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29976797)

  • 21. Antisite Pairs Suppress the Thermal Conductivity of BAs.
    Zheng Q; Polanco CA; Du MH; Lindsay LR; Chi M; Yan J; Sales BC
    Phys Rev Lett; 2018 Sep; 121(10):105901. PubMed ID: 30240242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mantle values of thermal conductivity and the geotherm from phonon lifetimes.
    Hofmeister AM
    Science; 1999 Mar; 283(5408):1699-706. PubMed ID: 10073928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional phonon transport in supported graphene.
    Seol JH; Jo I; Moore AL; Lindsay L; Aitken ZH; Pettes MT; Li X; Yao Z; Huang R; Broido D; Mingo N; Ruoff RS; Shi L
    Science; 2010 Apr; 328(5975):213-6. PubMed ID: 20378814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low thermal conductivity in a modular inorganic material with bonding anisotropy and mismatch.
    Gibson QD; Zhao T; Daniels LM; Walker HC; Daou R; Hébert S; Zanella M; Dyer MS; Claridge JB; Slater B; Gaultois MW; Corà F; Alaria J; Rosseinsky MJ
    Science; 2021 Aug; 373(6558):1017-1022. PubMed ID: 34446603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A C
    Shen Y; Wang FQ; Liu J; Guo Y; Li X; Qin G; Hu M; Wang Q
    Nanoscale; 2018 Mar; 10(13):6099-6104. PubMed ID: 29546901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal.
    Wang X; Kaviany M; Huang B
    Nanoscale; 2017 Nov; 9(45):18022-18031. PubMed ID: 29131229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD; Liu JT
    Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors.
    Morelli DT; Jovovic V; Heremans JP
    Phys Rev Lett; 2008 Jul; 101(3):035901. PubMed ID: 18764265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A differential thin film resistance thermometry method for peak thermal conductivity measurements of high thermal conductivity crystals.
    Zhou Y; Li C; Broido D; Shi L
    Rev Sci Instrum; 2021 Sep; 92(9):094901. PubMed ID: 34598484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations.
    Sun Z; Yuan K; Zhang X; Tang D
    Phys Chem Chem Phys; 2018 Dec; 20(48):30331-30339. PubMed ID: 30488067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder.
    Craco L; Carara SS; da Silva Barboza E; Milošević MV; Pereira TAS
    RSC Adv; 2023 Jun; 13(26):17907-17913. PubMed ID: 37323444
    [No Abstract]   [Full Text] [Related]  

  • 33. Ultra-high thermal conductivities of tetrahedral carbon allotropes with non-simple structures.
    Chen Q; Zhang P; Ouyang T; Zhang X; Qin G
    Phys Chem Chem Phys; 2021 Nov; 23(43):24550-24556. PubMed ID: 34486003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent phonon heat conduction in superlattices.
    Luckyanova MN; Garg J; Esfarjani K; Jandl A; Bulsara MT; Schmidt AJ; Minnich AJ; Chen S; Dresselhaus MS; Ren Z; Fitzgerald EA; Chen G
    Science; 2012 Nov; 338(6109):936-9. PubMed ID: 23161996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations.
    Zhou F; Nielson W; Xia Y; Ozoliņš V
    Phys Rev Lett; 2014 Oct; 113(18):185501. PubMed ID: 25396378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strain tuned high thermal conductivity in boron phosphide at nanometer length scales - a first-principles study.
    Muthaiah R; Garg J
    Phys Chem Chem Phys; 2020 Sep; 22(36):20914-20921. PubMed ID: 32924047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High frequency atomic tunneling yields ultralow and glass-like thermal conductivity in chalcogenide single crystals.
    Sun B; Niu S; Hermann RP; Moon J; Shulumba N; Page K; Zhao B; Thind AS; Mahalingam K; Milam-Guerrero J; Haiges R; Mecklenburg M; Melot BC; Jho YD; Howe BM; Mishra R; Alatas A; Winn B; Manley ME; Ravichandran J; Minnich AJ
    Nat Commun; 2020 Nov; 11(1):6039. PubMed ID: 33247101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activated Lone-Pair Electrons Lead to Low Lattice Thermal Conductivity: A Case Study of Boron Arsenide.
    Qin G; Xu J; Wang H; Qin Z; Hu M
    J Phys Chem Lett; 2023 Jan; 14(1):139-147. PubMed ID: 36577014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion.
    Liu J; Xu Z; Cheng Z; Xu S; Wang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27279-88. PubMed ID: 26593380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.