BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 29976853)

  • 21. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia?
    Damiano S; Muscariello E; La Rosa G; Di Maro M; Mondola P; Santillo M
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.
    Gonzalez AM; Hoffman JR; Stout JR; Fukuda DH; Willoughby DS
    Sports Med; 2016 May; 46(5):671-85. PubMed ID: 26666743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anabolic Heterogeneity Following Resistance Training: A Role for Circadian Rhythm?
    Camera DM
    Front Physiol; 2018; 9():569. PubMed ID: 29875682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species.
    Niess AM; Simon P
    Front Biosci; 2007 Sep; 12():4826-38. PubMed ID: 17569613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exercise metabolism and the molecular regulation of skeletal muscle adaptation.
    Egan B; Zierath JR
    Cell Metab; 2013 Feb; 17(2):162-84. PubMed ID: 23395166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Chronic Alcohol Abuse on Anabolic and Catabolic Signaling Pathways in Human Skeletal Muscle.
    Shenkman BS; Belova SP; Zinovyeva OE; Samkhaeva ND; Mirzoev TM; Vilchinskaya NA; Altaeva EG; Turtikova OV; Kostrominova TY; Nemirovskaya TL
    Alcohol Clin Exp Res; 2018 Jan; 42(1):41-52. PubMed ID: 29044624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences.
    Burd NA; Tang JE; Moore DR; Phillips SM
    J Appl Physiol (1985); 2009 May; 106(5):1692-701. PubMed ID: 19036897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats.
    Gomez-Cabrera MC; Borrás C; Pallardó FV; Sastre J; Ji LL; Viña J
    J Physiol; 2005 Aug; 567(Pt 1):113-20. PubMed ID: 15932896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise-induced skeletal muscle signaling pathways and human athletic performance.
    Camera DM; Smiles WJ; Hawley JA
    Free Radic Biol Med; 2016 Sep; 98():131-143. PubMed ID: 26876650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage.
    Di Meo S; Napolitano G; Venditti P
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31226872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oxidative response in the chronic constriction injury model of neuropathic pain.
    Tan EC; Bahrami S; Kozlov AV; Kurvers HA; Ter Laak HJ; Nohl H; Redl H; Goris RJ
    J Surg Res; 2009 Mar; 152(1):84-8. PubMed ID: 18708193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox Characterization of Functioning Skeletal Muscle.
    Zuo L; Pannell BK
    Front Physiol; 2015; 6():338. PubMed ID: 26635624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.
    Thirupathi A; Pinho RA
    J Physiol Biochem; 2018 Aug; 74(3):359-367. PubMed ID: 29713940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of free radicals and antioxidant signaling in skeletal muscle health and pathology.
    Ji LL; Gomez-Cabrera MC; Vina J
    Infect Disord Drug Targets; 2009 Aug; 9(4):428-44. PubMed ID: 19689384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle aging: influence of oxidative stress and physical exercise.
    Gomes MJ; Martinez PF; Pagan LU; Damatto RL; Cezar MDM; Lima ARR; Okoshi K; Okoshi MP
    Oncotarget; 2017 Mar; 8(12):20428-20440. PubMed ID: 28099900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A systematic review of p53 regulation of oxidative stress in skeletal muscle.
    Beyfuss K; Hood DA
    Redox Rep; 2018 Dec; 23(1):100-117. PubMed ID: 29298131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia.
    Sárközy M; Kovács ZZA; Kovács MG; Gáspár R; Szűcs G; Dux L
    Front Physiol; 2018; 9():1648. PubMed ID: 30534079
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.